Instructions for use (D/FR/IT/ENG) FSA14 www.tbsafety.ch (R)Green: Ready/ Standby Yellow: Battery over 80% charged Red: Battery empty SAFETY TB www.tbsafety.ch **SAFETY**^{TB} TB-Safety AG, CH-5070 Frick **VenION** www.tbsafety.ch VenION. **C € 0426** Article-no. 600600FSA Chemical Protective Clothing Discard after use! \bigcap i Serial-no. 16.4652.126 •CE labels compliant with the requirements set out into the reference standards (EN 1294 use with: VenION-suit Red light = life-threatening .../2013 .../2016 EN 14605 Typ 3 EN 14126 EN 13982-1 (180-188)-SAFETY www.tbsafety.ch (2) Art.-Nr. 600605 Serial-no. 398533.170 (i WARNING (108-116) BURN HAZARD. DO NOT JISASSEMBLE, CRUSH, INCINERATE OR EXPOSE TO HIGH TEMPERATURE (100°C). DISPOSE OF IN ACCORDANCE WITH APPLICABLE FEDERAL, STATE AND LOCAL REGULATIONS. Li-lon 6 Cell batterypack 21.6 V / 3400mAh / 70.2 Wh März 2016 5

Bedienungsanleitung VenION®

Legende zu Deckblatt

VenION® Gebläse

- A) Ausblasöffnung / Anschluss an den Anzug
- B) Filteraufnahme
- C) Multi-Port Partikel-/Gas-Filter: Zustandsanzeige
- D) Filter
- E) Akku-Verriegelung:

Akku einschieben ⇒ automatisch verriegelt

Akku entnehmen ⇒ Schalter in Pfeilrichtung bewegen

- F) Transportkiste mit zwei Ladestationen
- G) Etikett Ladestation: Beschriftung LED Anzeige
- H) Gummimanschette für Ausblasöffnung Gebläse
- I) Reissverschluss abkleben
- J) Etikett Anzug
- K) Etikett Akku

Etiketten VenION® Anzug und Akku

- 1) Hersteller und Warenzeichen
- 2) Modell-Name
- 3) Der Overall entspricht den europäischen Richtlinien für persöhnliche Schutzausrüstung der Kategorie III.
- 4) Offizielles Zeichen für Chemikalienschutzkleidung Schutzkleidungsstufen:

Typ 1: gasdicht Typ 4: sprühdicht Typ 2: nicht gasdicht Typ 5: partikeldicht

Typ 3: flüssigkeitsdicht Typ 6: begrenzt sprühdicht

5) Die Pflegesymbole haben folgende Bedeutung:

™ Nicht waschen

⊠ Nicht bügeln

🔯 Nicht in Trockner geben

Nicht chemisch reinigen

Leicht entzündbar: Nicht in der Nähe von Flammen und Wärmequellen einsetzen. Tychem C/F schmelzen bei 135° C

- 6) Das Symbol des 'offenen Buches' weist den Träger des Anzugs darauf hin, sich mit den 'Hinweisen für das Tragen von Schutz kleidung' vertraut zu machen
- Das Grössenpiktogramm gibt die Körpergrösse an, für welche der Anzug geeignet ist

Grösse	Brustumfang	Körpergrösse	Grösse	Brustumfang	Körpergrösse
S	84-92	162-170	XL	108-116	180-188
M	92-100	168-176	XXL	116-124	186-194
L	100-108	174-182	XXXL	124-132	192-205

- 8) (1) Das Symbol des "offenen Buches" weist den Benutzer darauf hin, sich mit den "Hinweisen zum Umgang mit Li-Jonen-Akkus" vertraut zu machen
- Li-Ionen-Akkus' vertraut zu machen
 9) 🕱 Verbrauchte Akkus nicht in den Hausmüll werfen
- 10) 🔥 Kontakte nicht kurzschliessen
- 11) 🐼 Verbrauchte Akkus stets dem Recycling zuführen

Achtung: Die Art des Recyclings kann von Land zu Land unterschiedlich sein. Bei Fragen wenden Sie sich bitte an eine autorisierte Werkstatt oder an den nächstgelegenen Kundendienst.

Anzug

Bilder 1-6) Für den Einsatz vorbereiten

Bilder 7-10) Einkleiden

Bilder a-j) Auskleiden

Akku-Ladestation

Akku in Ladeport einschieben:

⇒ LED leuchtet rot ⇒ Akku wird geladen

⇒ LED leuchtet gelb

- ⇒ Akku ist fast geladen
- ⇒ LED leuchtet grün ⇒ Akku ist ganz geladen

Falls LED der Ladestation beim Einlegen des Akkus nicht auf rot umschaltet, ist der Akku defekt! Dies gilt auch für voll geladene geladene Akkus.

Benutzungshinweise

Kennzeichnung und Einsatzbereich

Jeder VenION® Anzug ist mit einem Innenetikett (J) versehen. Das Innenetikett enthält Informationen zum Leistungsgrad und zum Schutz den der Artikel bietet. Der VenION® Anzug dient zum Schutz vor Kontamination durch gefährliche Substanzen. Er wird zum Schutz vor Kontakt mit Flüssigkeiten in Form von Strahl- oder Sprühnebel und feinen Partikeln eingesetzt.

Einsatzeinschränkungen

Der Gefahrstoff in der Umgebungsluft darf nicht >1Vol% betragen. Die Geräteträger sind während des Einsatzes zu überwachen. Die Umgebungsluft muss den üblichen Sauerstoffanteil von ca. 21% aufweisen (mindestens 17%). Aufgrund der hohen Barriere Eigenschaften des Materials kann der Träger einem Wärmestress ausgesetzt sein. Die Einsatztemperatur liegt zwischen -5°C bis 40°C.

Anzua

Der VenION® Anzug darf nur mit dem Gebläse VenION® getragen werden. Das Gebläse wird in einer verschliessbaren Innentasche im Innenbereich der Schulterabdeckung getragen und über Gurten gegen Verrutschen positioniert.

Ist der VenION® Anzug höher konzentrierten, toxischen Substanzen ausgesetzt als im Leistungsprofil wiedergegeben oder ist aufgrund der Herstellerinformation keine ausreichende Barriere vorhanden, sollte der Anzug für diesen Einsatzzweck nicht benutzt werden. Bitte stellen Sie sicher, dass Ihr Anforderungsprofil für den Einsatz durch das Leistungsprofil des VenION® Anzuges abgedeckt wird (Permeationsdaten Anzug und Handschuhe siehe Tabelle 1, Partikeldichtigkeit / Schutzfaktor siehe Tabelle 2). Zu verbrauchen bis 3 Jahre nach Produktionsdatum. Danach kann keine Gewährleistung durch den Hersteller übernommen werden. Benutzen Sie den VenION® Anzug nicht, wenn dieser Fehler aufweist. Im Falle von fehlerhaften Nähten oder sonstigen funktionellen Mängeln, schicken Sie bitte die Ware unbenutzt und unkontaminiert an die TB-Safety AG zurück. Durch unsachgemässe Lagerung kann die Klebkraft des Doppelklebbandes für die Reissverschlussabdeckung nachlassen. Bei Bedarf muss diese mit einem zusätzlichen Klebband abgeklebt werden. Rutschfestigkeit Sohle siehe Tabelle 3. Für den unsachgemässen Einsatz der Schutzkleidung übernehmen TB-Safety AG und / oder ihre Handelspartner keinerlei Haftung.

Gebläse

Das Gerät setzt sich erst in Betrieb, wenn der Akku eingelegt und alle Filter eingeschraubt sind. Wenn das LED im Multi-Port infolge erschöpften Akkus anfängt grün zu blinken, reicht der Soll-Luftdurchsatz noch für ca. 30 Minuten. Ertönt ein pulsierender Warnton und das LED blinkt rot, so wird der Luftdurchsatz unterschritten. Das kann bei schnellen Bewegungen, Kniebeugen usw. temporär der Fall sein, und erholt sich nach einigen Sekunden wieder. Falls nicht, liegt eine Verstopfung vor und der Gefahrenbereich muss umgehend verlassen werden, sofern die Ursache nicht sofort behoben werden kann. Wird die Luftmenge (aufgrund einer Verstopfung des Filters) unterschritten, weist ein dauernder Warnton den Geräteträger auf die Gefahr hin. Wenn die Warnvorrichtung dauernd ertönt, muss der Gefahrenbereich umgehend verlassen werden. Für Warnungen und Signale siehe Tabelle 4. Wird bei der Arbeit ein Gehörschutz oder eine Lärmsprechgarnitur getragen, so muss sichergestellt werden, dass der Träger trotzdem gewarnt wird. Es dürfen nur voll geladene Akkus verwendet werden. Es dürfen nur Filter vom Typ: P3 mit Rd50mm oder ABEKP3 verwendet werden.

Akku

Nur voll geladene Akkus verwenden. Für Einsatzzeit siehe Tabelle 🕏 5. Verbrennungsgefahr: Akku nicht zerlegen, zerquetschen, ver- 💆 brennen oder Temperaturen über 100°C aussetzen.

for safer solutions

Bedienungsanleitung VenION®

Filter

Es wird empfohlen, die Filter nur einmal zu verwenden. Der Filter darf nicht über längere Zeit einer Hitzeeinwirkung/-strahlung von mehr als 90 °C und keiner offenen Flamme ausgesetzt werden. Wenn die Bedingungen nicht erfüllt werden, kann der Filter irreversibel beschädigt werden und seine Funktionalität verlieren. Für den Fall, dass der Filter gegen gefährliche Mikroorganismen oder hochgiftige Partikel bzw. Gase eingesetzt wird, darf er nur einmal verwendet werden.

Partikelfilter P3: Der Filter ist gegen gefährliche Gase unwirksam. Bei der Filterklasse TH3 beträgt die nach innen gerichtete Leckage weniger als 0.2%. Für Volumenstrom siehe Tabelle 5.

Kombinationsfilter ABEKP3: Der ABEKP3 Filter besteht aus einem Partikelfilter und einem Aktivkohle-Gasfilter. Für Volumenstrom siehe Tabelle 5. Für Durchbruchszeiten siehe Tabelle 6.

Entsorgung

Nicht kontaminierte VenION® Anzüge können umweltgerecht thermisch oder auf Deponien entsorgt werden. Die Art der Entsorgung ist ausschliesslich von der Kontamination abhängig. Ein benutzter Filter gilt entsprechend der Gefahreneinstufung der Substanz, gegen die er eingesetzt war, als Sondermüll. Der Filter kann in einer Müllverbrennungsanlage für chemischen Müll oder einer entsprechenden Mülldeponie für chemische Abfälle entsorgt werden. Akkus immer dem Recycling zuführen. Bei Fragen wenden Sie sich bitte an TB-Safety AG oder an Ihren Händler.

Wartung

Anzug: Der VenION® Anzug darf nur einmal verwendet werden. Der Anzug ist nach dem Einsatz fachgerecht und unter Beachtung der Kontamination zu entsorgen.

Gebläse: Das Gebläse soll jährlich einer grundlegenden Inspektion unterzogen werden. Dabei müssen die Verschleissteile (Dichtungen) alle 5 Jahre komplett ausgetauscht werden. Die Warnvorrichtung muss neu kalibriert bzw. der Schaltpunkt überprüft und neu eingestellt werden. Gebläse sauber und unkontaminiert einschicken. Das Gebläse kann sterilisiert werden (${\rm H_2O_2}$), dazu unbedingt bei TB-Safety AG eine Anleitung verlangen.

Akku: Es wird empfohlen, die Akkus jährlich mit dem Gebläse zu inspizieren. Dabei wird unter anderem die Kapazität geprüft. Akku sauber und unkontaminiert einschicken.

Ersatzteile: Komponenten, die durch die Benutzung kaputt gehen können (O-Ringe, Multi-Port usw.) sowie Ersatzakkus können bei TB-Safety AG oder Ihrem Händler.

Lagerung

Lagerung erfolgt in Originalverpackung und auf handelsübliche Weise (Temperatur 5 bis 25°C, Luftfeuchtigkeit <70%) keiner direkten Sonneneinstrahlung aussetzen.

Anzug: Durch unsachgemässe Lagerung kann die Klebkraft des Doppelklebebandes nachlassen. Den Karton nicht mit einem Packmesser öffnen, da sonst die Anzüge Schaden nehmen könnten

Filter: Schutzverpackung muss unbeschädigt sein. Bei unsachgemässer Lagerung verkürzt sich die Widerstandsdauer des Filters oder er kann irreversibel beschädigt werden.

Garantie

Anzüge 3 Jahre nach Produktionsdatum. Gebläse und Akkus sowie Ladestation 2 Jahre nach Produktionsdatum. Bei Problemen kontaktieren Sie bitte TB-Safety AG oder Ihren Händler.

Schulung

Die Anzugsträger sind periodisch zu schulen und mit dem Um-

gang des kompletten Systems vertraut zu machen. Bitte beachten Sie auch die BRG 190, "Benutzung von Atemschutzgeräten". Für weitere Informationen wenden Sie sich bitte an info@tbsafety.ch.

Einsatz

Vorbereiten (1 - 6)

Unterkleidung und geeignetes Schuhwerk anziehen. Es müssen Nitrillatex-Handschuhe unter dem Anzug getragen werden, um eine Kontamination beim Auskleiden zu vermeiden. Anzug der Körpergrösse entsprechend auswählen: siehe Grössenpiktogramm im Innenetikett (7). Anzug, Gebläse und Filter auf mögliche Schäden kontrollieren (1). Akku in Gebläse einlegen (2). Gummimanschette (H) in Nut von der Gebläseausblasöffnung stülpen (3). Gebläse in die Anzugstasche stecken. Multi-Port durch Öffnung schlaufen (4). Tasche verschliessen. Multi-Port in Haube durch Elastik schlaufen (5). Abdeckungen vom Filtereingang und dem Filtergewinde entfernen. Bewahren Sie die Abdeckungen auf, um den Filter nach Gebrauch wieder zu verschliessen. Prüfen, ob die O-Ringe korrekt am Gebläse über den Filteraufnahmen (B) positioniert sind. Beide Filter von aussen in das Gebläse einsetzen (6). Gebläse schaltet sich ein.

Einkleiden (7 - 16)

Nitrillatex-Handschuhe anziehen. Anzug innen im Hüftbereich fassen und wie eine Hose anziehen. Gegen Hinfallen sichern oder zum Anziehen hinsetzen. Elastik am Hosenende auf Fussgelenkhöhe positionieren, damit die Sohle korrekt positioniert wird. Bauchgurt schliessen und anziehen (7). Durch Schultergurte in die Ärmel schlüpfen (8). Haube über Kopf ziehen. Schultergurte anziehen (9). Reissverschluss schliessen und zweifach verkleben (10). Siehe dazu Schema (I). Zuerst untere Lasche (blau) ohne Falten nach oben kleben (2.), anschliessend obere (grün) nach unten (3.). Nur so kann anschliessend geduscht werden. Der Anzug ist jetzt einsatzbereit.

Auskleiden (a - j)

Kontamination beachten: die Aussenseite des Anzugs darf nicht ohne Schutzhandschuhe berührt werden. Anzug nach internen Weisungen dekontaminieren. In den Big Bag stehen. Im Anzug aus den Ärmeln schlüpfen (a) und die beiden Schultergurten (b) lösen und Bauchgurt (c) öffnen. Wieder in die Ärmel schlüpfen. Auskleidereissband öffnen (d). Haube über den Kopf ziehen und dabei von innen nach aussen drehen (e). Aus Ärmeln schlüpfen (Nitrillatex-Handschuhe nicht ausziehen.). Anzug vorsichtig herabfallen lassen (f). Aus dem Anzug steigen und neben den Big Bag stehen. Beide Filter ausschrauben und Ein- und Ausgang mit Abdeckung verschliessen (g) und in Big Bag legen. Haube nach hinten klappen und Anzug mit Öffnung nach oben positionieren, so dass die Gebläsetasche unter der Öffnung liegt (h). Einen Handschuh ausziehen und in Big Bag legen. Mit der Hand ohne Handschuh die Gebläsetasche öffnen (i), mit der anderen den Anzug festhalten. Gebläse herausziehen bis auch der Multi-Port ausgeschlauft ist (j). Gebläse mit Multi-Port in Schleuse legen und nach internen Weisungen retablieren. Zweiten Handschuh ausziehen und in Big Bag legen. Der Big Bag gilt als kontaminiert.

Bedienungsanleitung VenION®

Tabelle 1: Permeationsdaten Anzugsmaterial und Handschuhe

Substanz	Durchbruchzeit (Minuten / EN-Klasse)				
	Tychem F	Chem TekTM	Tychem C	Camatril 730	
Ameisensäure 96%	> 480 / 6	nt /	s /	10 / 1	
Phosphorsäure 85%	> 480 / 6	nt /	> 480 / 6	> 480 / 6	
Schwefelsäure (Konz.)	> 480 / 6	> 240 / 5	> 480 / 6	91 / 4	
Natriumhydroxid (Konz.)	> 480 / 6	nt /	> 480 / 6	> 480 / 6	
Quecksilberchlorid	> 480 / 6	nt /	> 480 / 6	> 480 / 6	
Natriumcyanid	> 480 / 6	nt /	s /	> 480 / 6	
Kaliumchromat	> 480 / 6	nt /	nt /	> 480 / 6	
Trichloressigsäure	> 480 / 6	nt /	> 480 / 6	30 / 1	
Anilin	> 480 / 6	nt /	s /	43 / 2	
Salzsäure 37%	> 480 / 6	nt /	235 / 4	> 480 / 6	
Ethylendiamin	> 480 / 6	nt /	201 / 4	30 / 1	
Naphtalin	> 480 / 6	nt /	nt /	> 480 / 6	
Wasserstoffperoxid 10%	> 480 / 6	nt /	> 480 / 6	> 480 / 6	
Quecksilber	> 480 / 6	nt /	> 480 / 6	> 480 / 6	
Flusssäure 70%	102 / 3	nt /	nt /	s /	
Aceton	> 480 / 6	428 / 5	s /	s /	
Ethylenoxid	120 / 4	5/0	s /	s /	
Benzin (unverbleit)	> 480 / 6	nt /	nt /	128 / 4	
Dieselkraftstoff	> 480 / 6	nt /	nt /	> 480 / 6	

Schlüssel: s = sofort; nt = nicht getestet; > = grösser als; -- = nicht anwendbar

Weitere Durchbruchszeiten auf Anfrage!

Tabelle 2: Ergebnis Partikeldichtigkeit / Leckage nach innen des Anzuges nach EN 12941 mit NaCl und Schutzfaktor

Tätigkeit	Leckage nach innen
Gehen	0.0024 %
Kopf bewegen	0.0029 %
Sprechen	0.0030 %
Durchschnitt	0.0028 %

Schutzfaktor 35'700

Tabelle 3: Rutschfestigkeit Sohle

Unterlage	Test	Anforderungen	Ergebnis
Auf keramischem Boden	Vorwärtsgerichtet flach	≥ 0.30	0.49
mit Reinigungsmittel	Vorwärtsgerichtet Ferse (7°)	≥ 0.28	0.54
Auf Stahlboden mit	Vorwärtsgerichtet flach	-	0.12
Glyzerin	Vorwärtsgerichtet Ferse (7°)	-	0.14

Test nach EN ISO 13287:2012 Anforderungen nach ISO/TR 20880:2007

Tabelle 4: Warnhinweise Gebläse

akustisches Signal	optisches Signal	Zustand	Massnahme
a us	grün ein	Normalbetrieb	Auftrag ausführen
a us	gr <mark>ün blinke</mark> nd	Batterie Spannung niedrig (Vorwarnung)	vorbereiten für Ausschleusen, ca. 30 min Restzeit
a us	rot ein	kein oder 1 Filter eingesetzt	üblich beim Einkleiden
ein	rot b <mark>linken</mark> d	Gebläse blockiert	Zone sofort verlassen, Anzug ausziehen
ein	rot b <mark>linken</mark> d	Akku vollständig entladen / Störung	Zone sofort verlassen, Anzug ausziehen
1) Antervall 0,25s	farb <mark>ig</mark> bli <mark>nke</mark> nd	Filter gelöst	Filter einschrauben
Intervall 0.5s	rot blinkend	Ein- oder Auslass verstopft	Ursache beheben oder Zone verlassen
Intervall 1s	rot ein	Luftmenge < Soll	Zone sofort verlassen, Anzug ausziehen
2s alle 5s	rot ein	Kapazität der Batterie am Limit	Zone sofort verlassen, Anzug ausziehen
Interval 30s	ge <mark>lb </mark> blin <mark>ke</mark> nd	Akku defekt	Vorbereiten zum Ausschleusen, Akku entsorgen

Kritische Situationen und Beurteilung

Von der Ausatmeluft beschlägt Visier innen: Luftmenge zu tief ->CO2 zu hoch: Bereich verlassen und Anzug ausziehen Warnsignal ertönt, Luftmenge kritisch: Bereich verlassen und Anzug ausziehen

Komplettausfall Gebläse: Die Atemschutzfunktion ist nicht mehr gegeben. Im Haubenbereich entsteht schnell ein CO2-Stau und eine Sauerstoff-Verarmung. Gefährdete Umgebung rasch verlassen und Notfallreissband im Haubenbereich betätigen

Tabelle 6: Kombinations-Filtertyp EN147 / EN12941 / EN12942

A22E2K2HgSXP3 D R			D R 4	Filter p	ro Einsa	tz				
	Туре	Test gas			oug time in utes	Concentration gas at flow		Breakthroug DAC (Dynamic h Adsorbtion Capac concentration in grams		Capacity)
				EN 1)	Filter AVEC 2)	% vol	mg/l	ppm	EN 1)	Filter AVEC ²)
Ī	A2	Cyclohexane	(C ₆ H ₁₂)	35	39	0.5	17.5	10	18.375	20.475
ı	B2	Chlorine	(Cl ₂)	20	45	0.5	15	0.5	9.000	20.250
		Hydrogen Sulphide	(H ₂ S)	40	>80	0.5	7.1	10	8.520	>17,400
		Hydrogen cyanide	(HCN)	25	50	0.5	5.6	10	4.200	8.400
	E2	Sulphur dioxide	(SO ₂)	20	25	0.5	13.3	5	7.980	9.975
I	K2	Ammonia	(NH₃)	40	50	0.5	3.5	25	4.200	5.250
	Hg	Mercury	(Hg)	100 hours	>170 hours		13 mg/m³	0,1 mg/m³	2.340	>3,900
		Cyanogen chloride	(CICN)	20	25	0.25	6.28	0.5	3.768	4.710
	sx	Chloropicrin	(CClyNO)	20	44	0.5	33.55	0.5	20.130	44.286
						-,-				
		Phosgene	(COCl)	20	77.5	0,5	20.24	0.5	12.144	47.058
	Туре	Phosgene Test gas	, ,,	Breakthro			20.24 on of testing	0.5 Breakthroug h concentration	12.144 DAC (Dy Adsorbtion in gra	namic Capacity)
	Туре		, ,,	Breakthro	77.5 oug time in	0,5	20.24 on of testing	Breakthroug h	DAC (Dy Adsorbtion	namic Capacity)
	Туре		, ,,	Breakthro min	77.5 oug time in utes	0,5 Concentration gas at flow in	20.24 on of testing rate 70 l/min	Breakthroug h concentration	DAC (Dy Adsorbtion in gra	namic Capacity) ms
		Test ga	s	Breakthro min EN ³)	77.5 rug time in utes Filter AVEC 4)	0,5 Concentration gas at flow to the world with the concentration of th	20.24 on of testing rate 70 l/min mg/l	Breakthroug h concentration ppm	DAC (Dy Adsorbtion in gra	namic Capacity) ms Filter AVEC ⁴)
		Test ga	s (C ₆ H ₁₂)	Breakthro min EN ³)	77.5 rug time in utes Filter AVEC 4)	0,5 Concentration gas at flow to work work 0,1	20.24 on of testing rate 70 l/min mg/l 3.5	Breakthroug h concentration ppm 10	DAC (Dy Adsorbtion in gra EN ³) 17.150	namic Capacity) ms Filter AVEC ⁴)
	A2	Test gas	(C ₈ H ₁₂) (C <u>l</u> 2)	Breakthro min EN ³) 70	77.5 rug time in utes Filter AVEC 4) 73 83	0,5 Concentration gas at flow with the second content of the seco	20.24 on of testing rate 70 l/min mg/l 3.5	Breakthroug h concentration ppm 10 0.5	DAC (Dy Adsorbtion in gra EN ³) 17.150 4.200	namic Capacity) ms Filter AVEC ⁴) 17.885 17.430
	A2 B2 E2	Test gas Cyclohexane Chlorine Hydrogen Sulphide	(C ₈ H ₁₂) (C ₂) (H ₂ S)	EN 3) 70 20 40	77.5 rug time in utes Filter AVEC 4) 73 83 >80	0,5 Concentration gas at flow with the second seco	20.24 on of testing rate 70 l/min mg/l 3.5 3 1.4	Breakthroug h concentration ppm 10 0.5	DAC (Dy Adsorbtion in gra EN ³) 17.150 4.200 3.920	namic Capacity) ms Filter AVEC ⁴) 17.885 17.430 >7,840
	A2 B2	Test ga Cyclohexane Chlorine Hydrogen Sulphide Hydrogen cyanide	(C ₆ H ₁₂) (Cl ₂) (H ₂ S) (HCN)	Breakthro min EN ³) 70 20 40 25	77.5 rug time in utes Filter AVEC 4) 73 83 >80 110	0,5 Concentration gas at flow with the second of the seco	20.24 on of testing rate 70 l/min mg/l 3.5 3 1.4 1.1	Breakthroug h concentration ppm 10 0.5 10	DAC (Dy Adsorbtion in gra EN ³) 17.150 4.200 3.920 1.925	namic Capacity) ms Filter AVEC ⁴) 17.885 17.430 >7,840 8.470
	A2 B2 E2	Test ga Cyclohexane Chlorine Hydrogen Sulphide Hydrogen cyanide Sulphur dioxide	(C ₆ H ₁₂) (Cb) (H ₂ S) (HCN) (SO ₂)	EN ³) 70 20 40 25 20	77.5 rug time in utes Filter AVEC ⁴) 73 83 >80 110 42	0,5 Concentration gas at flow of the concentration	20.24 on of testing rate 70 l/min mg/l 3.5 3 1.4 1.1 2.7	Breakthroug h concentration ppm 10 0.5 10 10 5	DAC (Dy Adsorbtion in gra EN ³) 17.150 4.200 3.920 1.925 3.780	namic Capacity) ms Filter AVEC ⁴) 17.885 17.430 >7,840 8.470 7.938
	A2 B2 E2 K2	Test gas Cyclohexane Chlorine Hydrogen Sulphide Hydrogen cyanide Sulphur dioxide Ammonia	(C ₆ H ₁₂) (C ₂) (H ₂ S) (HCN) (SO ₂) (NH ₃)	En 3) 70 20 40 25 20 50	77.5 rug time in utes Filter AVEC 4) 73 83 >80 110 42 71	0,5 Concentration gas at flow with the second seco	20.24 on of testing rate 70 l/min mg/l 3.5 3 1.4 1.1 2.7 0.7	Breakthroug h concentration ppm 10 0.5 10 10 5 25	DAC (Dy Adsorbtion in gra EN ³) 17.150 4.200 3.920 1.925 3.780 2.450	namic Capacity) ms Filter AVEC 4) 17.885 17.430 >7,840 8.470 7.938 3.479

(COC) TP1632/VJ 14 0,5 20.24 0.5 TP1632/VJ 19.835

Tabelle 5: Einsatzzeit und Volumenstrom

Filter	Anzahl Filter	Volumenstrom pro Filter	Nennvolumenstrom	Einsatzzeit
P3	2	225 I/min	450 l/min*	4h
ABEKP3	2	225 I/min	450 I/min	4h

* FSA14 hat auch mit P3 Filter einen Nennvolumenstrom von 300 l/min

for safer solution: