

## **ITRS 1982**

# Istruzioni tecniche per rifugi speciali

- Sezione 5.1

Regole di costruzione e indicazioni sull'edilizia

# 5.1

# Regole di costruzione e indicazioni sull'edilizia

#### 5.12.4 Armatura di ritiro

Non è ammesso inserire armatura di ritiro perché essa potrebbe provocare un aumento non previsto del carico limite a flessione. Di conseguenza, invece di una rottura duttile per flessione, potrebbe verificarsi un'anticipata rottura fragile per taglio. In molti casi non è possibile evitare fessure di ritiro. Nelle solette intermedie all'interno della zona protetta può essere posata un'armatura di ritiro per assicurare l'impermeabilità.

#### 5.13 Giunti di dilatazione, di ritiro e di lavoro

Nella disposizione di giunti sono da osservare i seguenti principi:

- giunti di dilatazione non sono ammessi, nemmeno quando la costruzione sovrastante ne è provvista (eccezione: la rampa di fronte all'edificio principale)
- giunti di ritiro possono essere previsti come per le costruzioni progettate per le condizioni del tempo di pace (per esempio per rifugi di grandi dimensioni o aventi disposizioni planimetriche molto particolari). Nelle zone del serbatoio d'acqua sono sempre da prevedere giunti di ritiro (vedi punto 5.17)
- giunti di lavoro sono da prevedere nella costruzione di rifugi allo stesso modo che nelle costruzioni per il tempo di pace. Un'eccezione è rappresentata dai giunti di lavoro nei serbatoi d'acqua (vedi punto 5.17). Nella figura 5.1-8 è rappresentata una possibile disposizione dei giunti di lavoro.

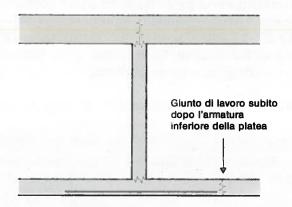



Figura 5.1-8 Disposizione pratica di giunti di lavoro

## 5.14 Collegamenti con parti d'edificio estranee al rifugio; rifugi su diversi piani

Parti d'edificio estranee al rifugio possono essere collegate all'involucro protetto in modo monolitico e rigido. Questi collegamenti o le parti di costruzioni adiacenti devono tuttavia essere realizzati in modo tale che con il loro crollo non venga provocata anche la distruzione dell'involucro protetto. Ciò può essere evitato, per esempio, con la predisposizione di zone di rottura obbligate. Il genere dei provvedimenti è lasciato alla competenza dell'ingegnere progettista. Nel caso che il rifugio venga realizzato sotto un immobile multipiani, esiste la possibilità che, con la distruzione di esso per effetto dell'onda d'urto dell'aria, l'involucro protetto venga pure coinvolto nella rovina (p.es. per oscillazioni di grandezza inammissibile). Per questa ragione i rifugi rispondenti alle presenti istruzioni possono essere realizzati soltanto se adempiono alle esigenze esposte nella tabella 5.1-9.

Tabella 5.1-9 Numero massimo ammesso di piani superiori per rifugi sotto immobili multipiani

| Numero dei piani inferiori esistenti      | 1 | 2 | 3  |
|-------------------------------------------|---|---|----|
| Numero massimo ammesso di piani superiori | 6 | 8 | 10 |

I rifugi possono essere attuati su due piani al massimo (vedi punto 2.12). Rifugi situati sotto piani cantinati non protetti, devono essere realizzati in modo che le funzioni delle uscite di soccorso e delle prese d'aria non abbiano ad essere pregiudicate in caso di crollo di parti d'edificio non protette (vedi punto 5.35).

#### 5.15 Fondazioni per rifugi su palificazioni¹)

Se un rifugio viene costruito sotto un immobile multipiani con fondazioni su palificazioni, il dimensionamento del rifugio deve corrispondere ai dati della tabella 5.1-10. Rifugi sotto edifici con fondazioni su pali sospesi in terreni con pericoli di liquefazione (p.es. torba, creta lacustre, sabbia fine e silt sciolti saturi d'acqua) non sono ammessi.

Tabella 5.1-10 Dimensionamento di rifugi su pali

| Genere di pali                                                                                                          | Genere di dimensionamento                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pali sospesi e pali di punta,<br>non su roccia                                                                          | Il dimensionamento avviene senza tener conto dei pali, ossia supponendo che essi cedono a seguito del carico dovuto agli effetti delle armi (assorbimento dei carichi soltanto via platea), come pure supponendo che i pali rimangono rigidi (assorbimento dei carichi soltanto via pali). |
| Pali fondati su roccia oppure<br>su terreno compatto molto<br>duro (terreno di fondazione<br>tipo III, vedi punto 5.33) | Il dimensionamento avviene supponendo che<br>i pali rimangono rigidi (assorbimento dei<br>carichi soltanto via pali).                                                                                                                                                                      |

<sup>1)</sup> Fondazioni su palificazioni per rifugi in terreno libero non sono ammesse.

Per i pali che sono fondati su roccia oppure su terreno compatto molto duro, occorre la verifica della loro capacità portante sotto il carico dell'onda d'urto dell'aria. I pali devono sempre essere disposti sotto le pareti (perimetrali e interne) risp. sotto i pilastri. Gli sforzi di trazione trasversale che si manifestano nelle pareti a seguito del carico concentrato sui pali, devono essere assorbiti da un'armatura supplementare ( $O_f = 460 \text{ N/mm}^2$ ).

#### 5,16 Condotte e serbatoi di combustibili estranei alla protezione civile

#### 5.16.1 Fissaggio delle condotte

Condotte in materia sintetica, in acciaio, in ghisa duttile o altro materiale duttile possono essere collegate in modo rigido alle pareti e alle solette. I collegamenti ad apparecchi con fissaggi antiurto oppure ad apparecchi mobili devono essere realizzati in modo elastico utilizzando raccordi flessibili, per impedire rotture.

#### 5.16.2 Tracciato delle condotte

#### Canalizzazioni

Nel caso che le canalizzazioni siano situate sotto la platea, esse devono essere posate secondo le indicazioni della figura 5.1-11.

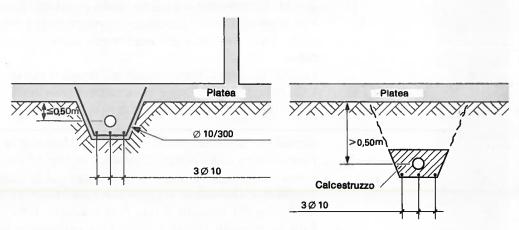



Figura 5.1-11 Canalizzazioni in trincea

Nel caso che le canalizzazioni corrano nella platea, parallelamente alle pareti o all'allineamento dei pilastri, esse devono essere posate fuori della zona dell'armatura inferiore principale, risp. dello spessore maggiorato della platea (vedi figura 5.1-12).

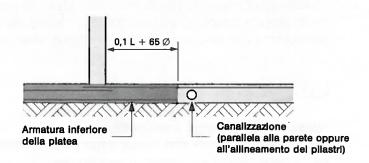



Figura 5.1-12 Canalizzazione nella platea sotto pareti

#### Condotte per l'impianto elettrico e per le trasmissioni

Le condotte per l'impianto elettrico e per le trasmissioni non devono provocare alcun indebolimento di una determinata sezione. In particolare, all'interno di una zona che si estende fino a 0,3 L dall'asse di una parete oppure fino a D<sub>m</sub>/2 dall'asse del pilastro, non si devono posare condotte raggruppate parallelamente alle pareti risp. alla linea dei pilastri (vedi figura 5.1-13).

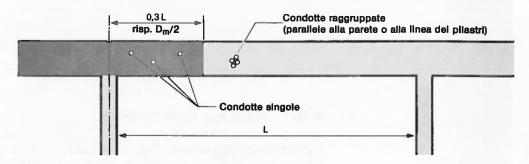



Figura 5.1-13 Condotte per l'impianto elettrico e per le trasmissioni

#### Condotte di ventilazione all'interno dell'involucro protetto

Le condotte d'immissione e di espulsione dell'aria non devono essere posate negli elementi portanti dell'involucro protetto.

#### Tubazioni per l'aria fra pozzi e camere d'aria

Per tali condotte occorre utilizzare tubi in calcestruzzo armato, posati su calcestruzzo leggermente armato, oppure canali rettangolari armati gettati sul posto. La superficie interna delle condotte non deve essere verniciata. Per le tubazioni in calcestruzzo armato non è necessaria alcuna verifica speciale. Esse devono però essere ricoperte con uno strato di ameno 0,50 m di terra.

l canali in calcestruzzo gettati sul posto la cui dimensione interna massima in luce è di un metro, sono da eseguire con pareti di 0,20 m di spessore e una percentuale d'armatura minima di 0,15%.

#### Condotte delle acque di scarico estranee alla protezione civile

Le condotte delle acque di scarico estranee alla protezione civile e che non possono essere evitate, vanno posate nel calcestruzzo all'interno della zona protetta, rinforzando localmente l'elemento di costruzione corrispondente. Condotte in materiale duttile di alta qualità, p.es. ghisa duttile, tubi in acciaio o tubi in materia plastica (con una pressione nominale minima PN 6), non devono essere posate nel calcestruzzo ma accuratamente fissate a regola d'arte.

#### 5.16.3 Raccordi che sboccano all'esterno

I passaggi di condotte rigide attraverso giunti di separazione, così come i raccordi che sboccano all'esterno devono essere realizzati in modo tale da poter sopportare senza danni uno spostamento relativo di 50 mm.

#### 5.16.4 Risparmi

#### Risparmi nelle pareti intermedie

Risparmi nelle pareti intermedie sono principalmente necessari per gli attraversamenti con tubi e canali di ventilazione. Devono essere disposti in modo da non provocare un indebolimento determinante in una parte della costruzione. La corrispondente verifica dev'essere ogni volta presentata.

#### Risparmi nell'involucro protetto e nella parte entrata

Grossi risparmi nell'involucro protetto e nella parte entrata sono condizionati dalla disposizione di chiusure per rifugi e di valvole anti-esplosione. Nel caso di grandi risparmi, la struttura portante rimanente deve essere suddivisa in diversi elementi portanti, da dimensionare a flessione e taglio (vedi esempio punto 5.49, figura 5.4-124).

Le chiusure per rifugi e le valvole anti-esplosione devono essere installate seguendo le specifiche direttive di montaggio. I risparmi nell'involucro protetto e nella parte entrata devono essere sigillati con calcestruzzo. Affinché la sigillatura possa resistere all'onda d'urto dell'aria, essi devono presentare una superficie scabra.

#### 5.16.5 Serbatoi di combustibili estranei alla protezione civile

Serbatoi di combustibili estranei alla protezione civile devono essere disposti al di fuori dell'involucro protetto. Lo spessore della parete che separa il rifugio dal confinante locale del serbatoio di combustibile estraneo alla protezione civile — indipendentemente dalla capienza del serbatoio — deve essere di 0,40 m. Questa parete non deve avere alcuna apertura (p.es. valvola di sovrappressione, ecc.).

Nell'immediata vicinanza del rifugio v.a.d. entro i confini dell'edificio nel quale si trova il rifugio, è proibito sistemare dei serbatoi di benzina. Per quelli situati fuori dall'edificio si deve fare attenzione che dalla zona del serbatoio di benzina non vi siano collegamenti con le canalizzazioni o altre condutture, passaggi sotterranei ecc. verso il rifugio o nelle sue immediate vicinanze. Con ciò si conta di impedire, in caso di distruzione del serbatoio, che la benzina possa affluire nelle vicinanze del rifugio o alle sue entrate, alle uscite di soccorso e alla presa e scarico d'aria.

#### 5.17 Serbatoi d'acqua

#### 5.17.1 Indicazioni costruttive

Nella realizzazione di un serbatoio d'acqua sono da osservare le seguenti indicazioni costruttive:

- quando un rifugio è costruito su due piani, il serbatoio d'acqua deve sempre essere disposto al piano inferiore
- un normale additivo idrofugo deve essere miscelato nel calcestruzzo da utilizzare per la platea e per le pareti del serbatoio
- tutti i giunti di lavoro fra pareti e platea, ad eccezione di quelli-riguardanti le pareti intermedie, devono essere muniti di un nastro di tenuta. Essi sono da trattare in modo particolarmente accurato
- la gettata della platea del serbatoio, rispettivamente quella delle pareti, deve essere eseguita in una sola tappa
- per i casseri delle pareti si devono utilizzare dei distanziatori che non diano problemi di impermeabilità
- affinché si formino il meno possibile crepe di ritiro nel serbatoio, occorre prevedere dei giunti di ritiro nelle immediate vicinanze (ma non all'interno del serbatoio)

- per facilitare la pulizia del serbatoio, tutti gli angoli devono essere successivamente provvisti di una guscia arrotondata (vedi figura 5.1-14)
- i serbatoi sono da eseguire senza intonaco o pittura interni. Qualsiasi fessura è da sigillare localmente
- per evitare eventuali apparizioni di pozzanghere nei locali adiacenti al serbatoio (p.es. a causa di piccole fughe, gocciolamenti e perdite d'acqua dal rubinetti) occorre prevedere delle canalette di raccolta o almeno una leggera pendenza con pozzetto di scarico (vedi figura 5.1-14).

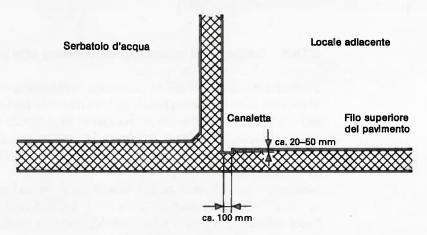



Figura 5.1-14 Canaletta di raccolta lungo il serbatoio d'acqua (sezione)

#### 5.17.2 Prova dell'impermeabilità

L'impermeabilità del serbatoio è da verificare, durante almeno un mese, immediatamente ad esecuzione terminata dei lavori grezzi e delle necessarie installazioni (passo d'uomo, condotte del troppo pieno, condotte di scarico e di prelievo). A questo scopo il serbatoio deve essere riempito con acqua e le perdite devono essere misurate a partire dal terzo giorno dopo il riempimento. Esse non devono complessivamente superare il 5% del contenuto del serbatoio in due settimane.

#### 5.18 Isolazioni

#### 5.18.1 Isolazioni contro l'umidità

Il tipo d'isolazione contro l'umidità nei rifugi polivalenti è determinato dall'utilizzazione in tempo di pace. Nei locali adiacenti propri alla protezione civile, l'isolazione dev'essere adattata a quella dell'esecuzione del tempo di pace. Bisogna scegliere soluzioni che, in tempo di pace, assicurino l'impermeabilità completa della costruzione e che, dopo un attacco armato, siano ancora in grado di garantire una certa impermeabilità.

#### 5.18.2 Isolazioni termiche e foniche

Vengono ammesse isolazioni termiche e foniche di esecuzione semplice e rapidamente smontabili (tuttavia non fisse), nel caso siano necessarie per l'utilizzazione in tempo di pace.

# 5.7

# Controllo delle misure di protezione contro gli aggressivi chimici

#### 5.71 Generalità

La protezione contro gli aggressivi chimici consiste nell'impedire che gli occupanti di un rifugio entrino in contatto o aspirino queste sostanze pericolose. Perciò si impongono ai rifugi le seguenti condizioni:

- ermeticità dell'involucro protetto, in particolare anche per le aperture necessarie per l'utilizzazione in tempo di pace
- sovrappressione nel rifugio
- passaggio dell'aria immessa attraverso filtri a gas
- misure di protezione alle entrate e nei locali tecnici.

Grazie al dimensionamento del rifugio contro gli effetti delle armi atomiche, l'ermeticità dell'involucro protetto è già largamente garantita. Questa ermeticità costituisce nello stesso tempo una condizione necessaria per mantenere all'interno del rifugio una sovrappressione. Le fessure capillari e le fessure di ritiro non necessitano in questo contesto di alcun trattamento speciale, poiché essi non influenzano l'ermeticità del rifugio. Al contrario, alcune installazioni e dotazioni tecniche devono rispettare determinate condizioni che si rendono necessarie per conservare l'ermeticità risp. per ottenere la sovrappressione interna. Queste condizioni sono state considerate nei corrispondenti capitoli, ma non hanno fatto oggetto di menzioni speciali per la loro efficacia quale misura di protezione contro gli aggressivi chimici.

Al momento dell'elaborazione del progetto, per garantire la protezione C occorre osservare alcuni principi relativi alla concezione delle entrate e dell'accesso ai locali tecnici.

Qui di seguito vengono descritte tutte le misure di protezione C, in modo da poterle controllare durante la progettazione.

#### 5.72 Concezione delle entrate

Affinché nessun aggressivo chimico solido o liquido possa penetrare nel rifugio, è necessario procedere ad una decontaminazione prima di entrare nel rifugio. Il locale di predisinfezione è previsto a tale scopo.

Le chiuse di compressione fungono da chiusa contro i gas e nel medesimo tempo impediscono la penetrazione di aggressivi gassosi nel rifugio. Nessun aggressivo C deve poter penetrare oltre le chiuse.

#### 5.73 Locali tecnici

Aggressivi C possono penetrare sotto forma gassosa (ma non aggressivi liquidi o solidi) nella sala macchine, passando attraverso i prefiltri con l'aria di raffreddamento aspirata per il gruppo elettrogeno. L'accesso alla sala macchine avviene perciò direttamente da una chiusa d'entrata oppure attraverso una chiusa antigas specialmente prevista a questo scopo.

Il locale di ventilazione si trova nella zona di sovrappressione interna. L'aria aspirata dall'esterno viene condotta nei filtri antigas (funzionamento con filtro) attraverso condotte ermetiche. Nel locale di ventilazione non può perciò prodursi alcuna contaminazione.

#### 5.74 Ventilazione

Affinché nessun aggressivo possa penetrare con l'aria fresca aspirata ed espandersi nel rifugio, tutti i rifugi dispongono di filtri antigas da dove passa l'aria fresca in caso di funzionamento con filtro.

Una parte sufficiente di aria di scarico deve essere espulsa passando attraverso la chiusa, in modo che gli aggressivi gassosi possano essere espulsi (vedi punto 2.13 e 2.22.2, espulsione dell'aria). Dappertutto dove l'aria viziata è espulsa dal rifugio verso l'esterno essa deve passare attraverso una valvola di sovrappressione che assicura un'otturazione ermetica dell'apertura in caso di interruzione della ventilazione.

#### 5.75 Acque di scarico

Tutti gli apparecchi e pozzetti di scarico sono muniti di un normale sifone che serve ad assicurare una chiusura inodore e per impedire l'entrata di aggressivi C. I pozzetti di ispezione ed i pozzi di pompaggio delle acque di scarico, in ogni modo esistenti, devono essere muniti di un coperchio stagno e avvitabile.

Il sistema di evacuazione delle acque di scarico, nella parte protetta di un'autorimessa, può costituire un'eccezione. In questo caso, si utilizzeranno pozzetti e canali di scarico non dotati di sifone. Prima dell'entrata nella zona protetta, come pure prima dell'uscita dalla stessa, questo tratto di canalizzazione dev'essere chiuso da un pozzetto sifonato (figura 5.7-1) oppure con una saracinesca stagna (figura 5.7-2), allo scopo di impedire la penetrazione di aggressivi C e per ottenere la sovrappressione interna (vedi anche punto 2.3).

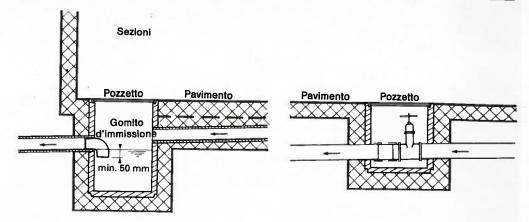



Figura 5.7-1
Pozzetto sifonato per l'evacuazione delle acque di scarico dell'autorimessa

Figura 5.7-2 Saracinesca per l'evacuazione delle acque di scarico dell'autorimessa

### 5.76 Aperture nell'involucro protetto del rifugio, necessarie in tempo di pace

Nei rifugi con utilizzazione in tempo di pace occorre particolarmente osservare che le aperture supplementari nell'involucro protetto del rifugio, in ogni modo esistenti per il periodo di pace, possano venir chiuse ermeticamente in caso d'occupazione del rifugio. Nel caso di aperture d'entrata e di aerazione supplementari per il tempo di pace (aerazione dell'autorimessa), si ottiene la succitata chiusura ermetica per mezzo delle chiusure di rifugio normalizzate ed adeguatamente designate (PB, CB). Condotte di acque di scarico estranee alla protezione civile, le quali non vengono integrate nel sistema di evacuazione delle acque di scarico del rifugio, devono essere eseguite nella zona protetta con un sistema di canalizzazione chiuso e stagno. Le eventuali aperture necessarie per la pulizia ed i pozzetti d'ispezione devono essere munite di coperchi inodori ed avvitabili.

I passaggi delle condutture di acqua, di elettricità e di trasmissione, attraverso l'involucro protetto del rifugio, devono essere eseguiti in modo ermetico.