

Dipartimento federale della difesa, della protezione della popolazione e dello sport DDPS Ufficio federale della protezione della popolazione UFPP Infrastruttura

ITC 2017 - Esempi

Esempi relativi alla costruzione e al dimensionamento delle costruzioni di protezione secondo ITC 2017

Indice

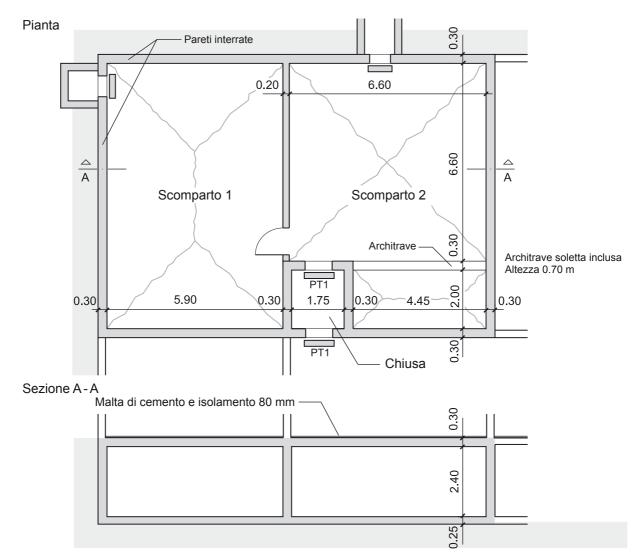
1	Costruzione di protezione con 100 posti protetti	1
1.1	Scopo dell'esempio	1
1.2	Basi	1
	1.2.1 Dimensioni1.2.2 Materiali1.2.3 Terreno di fondazione	1 2 2
1.3	Soletta dello scomparto 1	2
	 1.3.1 Valore di dimensionamento delle azioni 1.3.2 Armatura 1.3.3 Resistenze ultime alla flessione 1.3.4 Sicurezza strutturale soggetta a flessione 1.3.5 Resistenza ultima a taglio 	2 3 4 4 5
1.4	Soletta dello scomparto 2	6
	1.4.1 Valore di dimensionamento delle azioni1.4.2 Armatura1.4.3 Sicurezza strutturale soggetta a flessione1.4.4 Resistenza ultima a taglio	6 6 7 8
1.5	Appoggio sostitutivo 1	10
	 1.5.1 Valore di dimensionamento delle azioni 1.5.2 Dimensioni di taglio sul sistema elastico 1.5.3 Armatura 1.5.4 Sicurezza strutturale soggetta a flessione 1.5.5 Resistenza ultima a taglio 	10 11 12 12 14
1.6	Pareti perimetrali interrate	16
	 1.6.1 Valore di dimensionamento delle azioni 1.6.2 Armatura 1.6.3 Resistenze ultime alla flessione 1.6.4 Sicurezza strutturale soggetta a flessione 1.6.5 Resistenza ultima a taglio 	16 16 16 17 17
1.7	Pareti perimetrali verso cantinati non protetti	18
	 1.7.1 Valore di dimensionamento delle azioni 1.7.2 Armatura 1.7.3 Resistenze ultime alla flessione 1.7.4 Sicurezza strutturale soggetta a flessione 1.7.5 Resistenza ultima a taglio 	18 18 18 18

1.8	Platea scomparto 1	21
	 1.8.1 Valore di dimensionamento delle azioni 1.8.2 Armatura 1.8.3 Resistenze ultime alla flessione 1.8.4 Sicurezza strutturale soggetta a flessione 1.8.5 Resistenza ultima a taglio 	21 22 22 23 23
1.9	Platea scomparto 2	24
2	Costruzione di protezione con angolo rientrante	25
2.1	Scopo dell'esempio	25
	Basi	25
	2.2.1 Dimensioni	25
	2.2.2 Materiali	26
2.3	Ipotesi delle armature a flessione	26
	2.3.1 Soletta	26
	2.3.2 Componenti adiacenti	26
2.4	Dimensionamento della soletta	27
	2.4.1 Valore di dimensionamento delle azioni	27
	2.4.2 Modello statico	28
	2.4.3 Tipi di carico	29 30
	2.4.4 Sicurezza strutturale soggetta a flessione2.4.5 Resistenza ultima a taglio	35
	2.4.6 Sicurezza strutturale del punzonamento	39
	2.4.7 Disegno dell'armatura	44
3	Costruzione di protezione di un'abitazione	45
3.1	Scopo dell'esempio	45
	Basi	45
	3.2.1 Dimensioni	45
	3.2.2 Componenti dimensionati	46
	3.2.3 Materiali	47
	3.2.4 Terreno di fondazione	47
3.3	Campo della soletta 1	47
	3.3.1 Valore di dimensionamento delle azioni	47
	3.3.2 Armatura	48
	3.3.3 Resistenze ultime alla flessione	48
	3.3.4 Sicurezza strutturale soggetta a flessione3.3.5 Resistenza ultima a taglio	48 49

3.4	Campo della soletta 2	50
	 3.4.1 Valore di dimensionamento delle azioni 3.4.2 Modello statico 3.4.3 Tipi di carico 3.4.4 Sicurezza strutturale soggetta a flessione 3.4.5 Armatura 3.4.6 Resistenza ultima a taglio 	50 50 51 52 56
3.5	Appoggio sostitutivo A	59
	3.5.1 Valore di dimensionamento delle azioni3.5.2 Sicurezza strutturale soggetta a flessione3.5.3 Resistenza ultima a taglio	59 59 60
3.6	Campi delle platee 1 e 2	61
	 3.6.1 Valore di dimensionamento delle azioni 3.6.2 Carichi dell'edificio sovrastante per utilizzo in tempi di pace 3.6.3 Armatura 3.6.4 Resistenze ultime alla flessione 3.6.5 Sicurezza strutturale soggetta a flessione 3.6.6 Resistenza ultima a taglio 	61 61 62 63 63
3.7	Appoggio sostitutivo B nella platea	65
	3.7.1 Verifica della sicurezza strutturale3.7.2 Sicurezza strutturale soggetta a flessione3.7.3 Resistenza ultima a taglio	65 66 67
3.8	Pareti perimetrali interrate	68
	 3.8.1 Valore di dimensionamento delle azioni 3.8.2 Armatura 3.8.3 Resistenze ultime alla flessione 3.8.4 Sicurezza strutturale soggetta a flessione 3.8.5 Resistenza ultima a taglio 	68 69 69 69
4	Costruzione di protezione nel garage sotterraneo	71
4.1	Basi	71
	4.1.1 Dimensioni4.1.2 Descrizione dei componenti portanti4.1.3 Materiali4.1.4 Terreno di fondazione	71 72 73 73
4.2	Soletta su appoggio puntuale	74
	 4.2.1 Valore di dimensionamento delle azioni 4.2.2 Altezze statiche e armatura minima 4.2.3 Modello statico 4.2.4 Tipi di carico 4.2.5 Sicurezza strutturale soggetta a flessione 4.2.6 Resistenza ultima a taglio 4.2.7 Punzonamento pilastro in calcestruzzo 4.2.8 Punzonamento pilastro in acciaio 4.2.9 Disegno dell'armatura 	74 74 75 76 77 86 87 92

4.3	Campo delle platee	98
	 4.3.1 Valore di dimensionamento dell'azione 4.3.2 Altezze statiche e armatura minima 4.3.3 Modello statico 4.3.4 Tipi di carico 4.3.5 Sicurezza strutturale soggetta a flessione 4.3.6 Resistenza ultima a taglio 4.3.7 Punzonamento pilastro in calcestruzzo 4.3.8 Disegno dell'armatura 	98 99 100 101 102 110 115
4.4	Pareti perimetrali interrate	121
	 4.4.1 Valore di dimensionamento delle azioni 4.4.2 Armatura 4.4.3 Resistenze ultime alla flessione 4.4.4 Sicurezza strutturale soggetta a flessione 4.4.5 Resistenza ultima a taglio 	121 122 122 122 123
4.5	Pilastro in calcestruzzo	124
	4.5.1 Valore di dimensionamento della forza normale4.5.2 Verifica della sicurezza strutturale	124 124
4.6	Pilastro in acciaio	126
	4.6.1 Valore di dimensionamento della forza normale4.6.2 Verifica della sicurezza strutturale4.6.3 Testa pilastro4.6.4 Soletta di fondo	126 126 127 130

1 Costruzione di protezione con 100 posti protetti


1.1 Scopo dell'esempio

Sull'esempio di una costruzione di protezione con due scomparti e una chiusa, viene indicata la procedura utilizzata per la realizzazione di grandi costruzioni di protezione. La soletta e la platea devono essere accuratamente dimensionate. Le eventuali verifiche saranno effettuate con il metodo cinematico.

Nell'esempio non sono riportate le verifiche necessarie per l'eventuale utilizzo in tempi di pace, secondo la norma SIA 260 e seguenti.

1.2 Basi

1.2.1 Dimensioni

1.2.2 Materiali

Acciaio d'armatura B500B

Valore di calcolo del limite di snervamento $f_{sd} = 600 \text{ N/mm}^2$ Modulo di elasticità $E_{sd} = 205'000 \text{ N/mm}^2$

Calcestruzzo C30/37

Valore di calcolo della resistenza alla compressione f_{cd} = 44 N/mm² Valore di calcolo della tensione tangenziale ultima τ_{cd} = 1.7 N/mm² Grana max. degli inerti D_{max} = 32 mm

Rivestimento armatura: (valore minimo / valore di calcolo) verso terra 35 / 40 mm nell'edificio 20 / 25mm

1.2.3 Terreno di fondazione

Terreno di fondazione tipo I_a Carico ripartito in maniera uniforme dovuto ai carichi dell'edificio in tempi di pace senza peso proprio della platea

 40 kN/m^2

1.3 Soletta dello scomparto 1

1.3.1 Valore di dimensionamento delle azioni

$$q_d = g_k + \Phi \cdot q_k + \psi_{21} \cdot q_{k1}$$
 Con $g_k = g_{k,EG} + g_{k,AL}$

q_d valore di dimensionamento delle azioni sulla soletta

 g_{kEG} valore caratteristico del peso proprio della soletta

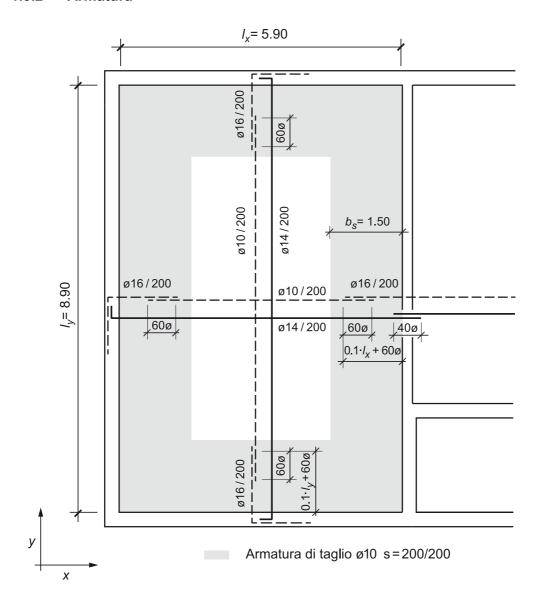
 $g_{k,AL}$ valore caratteristico del carico strutturale (80 mm di strato sulla soletta)

 Φ fattore di carico dinamico

 $q_{\it k}$ valore caratteristico dell'onda d'urto dell'aria

 ψ_{21} coefficiente di riduzione

 q_{k1} valore caratteristico del carico utile nell'edificio


$$g_{k,EG} = 0.30 \text{ m} \cdot 25 \text{ kN/m}^3 = 7.5 \text{ kN/m}^2$$

 $g_{k,AL} = 0.08 \text{ m} \cdot 20 \text{ kN/m}^3 = 1.6 \text{ kN/m}^2$

$$\Phi$$
 = 1.2 (ITC 2017, tabella 4)
 q_{ν} = 100 kN/m² (ITC 2017, capitolo 6.3)

$$\psi_{21}$$
= 0.3 Categoria A1 (SIA 260, tabella 1)
 q_{k1} = 2.0 kN/m² Categoria A1 (SIA 261, tabella 8)

$$q_d = 7.5 + 1.6 + 1.2 \cdot 100 + 0.3 \cdot 2.0 = 129.7 \text{ kN/m}^2$$

1.3.2 Armatura

1.3.3 Resistenze ultime alla flessione

Resistenza ultima alla flessione dell'armatura inferiore in direzione x

Geometria

Spessore soletta h = 300 mmRivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ Disposizione armatura 1° strato

Calcolo della resistenza ultima alla flessione

Armatura di base

 $\begin{array}{lll} \text{Diametro} & \emptyset = 14 \text{ mm} \\ \text{Distanza} & s = 200 \text{ mm} \\ \text{Sezione acciaio} & a_s = 770 \text{ mm}^2/\text{m} \\ \text{Altezza della zona soggetta a} & x = 12.3 \text{ mm} \\ \text{pressoflessione} & d = 268.0 \text{ mm} \\ \text{Braccio di leva delle forze interne} & z = 262.8 \text{ mm} \\ \text{Percentuale armatura} & \rho = 0.29 \% \end{array}$

Resistenza ultima alla flessione m_{Rd} = 121 kNm/m

Indice	Posizione	Armatura	a _{s,ef} [mm²/m]	d [mm]	ρ _{ef} [%]	m _{Rd} [kNm/m]	Osservazioni
x+ y+	Campo Direzione x Direzione y	ø14/200 ø14/200	770 770	268 254	0.29 0.30	121 115	- -
x1-	Parete perimetrale sinistra	ø16/200	1'005	252	0.40	148	Parete determinante
x2-	Parete intermedia destra	ø16/200	1'005	267	0.38	157	-
y1-	Parete perimetrale inferiore	ø16/200	1'005	251	0.40	147	-
y2-	Parete perimetrale superiore	ø16/200	1'005	251	0.40	147	-

Le definizioni «sinistra» ecc. si riferiscono al capitolo 1.3.2 «Armatura» Pareti: armatura verticale esterna, armatura orizzontale interna.

1.3.4 Sicurezza strutturale soggetta a flessione

Carico limite a flessione

$$q_{Rd} = \left[\frac{12 \cdot (m_{xRd1}^{-} + 2 \cdot m_{xRd}^{+} + m_{xRd2}^{-})}{3 \cdot {I_{x}}^{2} \cdot \frac{I_{x}^{3}}{I_{y}}} + \frac{12 \cdot (m_{yRd1}^{-} + 2 \cdot m_{yRd}^{+} + m_{yRd2}^{-})}{3 \cdot {I_{x}} \cdot {I_{y}} \cdot {I_{x}}^{2}} \right]$$

$$q_{Rd} = \left[\frac{12 \cdot (148 + 2 \cdot 121 + 157)}{3 \cdot 5.9^2 - \frac{5.9^3}{8.9}} + \frac{12 \cdot (147 + 2 \cdot 115 + 147)}{3 \cdot 5.9 \cdot 8.9 - 5.9^2} \right] = 131.9 \,\text{kN/m}^2$$

$$q_{Rd} = 131.9 \,\text{kN/m}^2 > q_d = 129.7 \,\text{kN/m}^2$$

1.3.5 Resistenza ultima a taglio

Verifica della resistenza ultima a taglio con il carico limite a flessione della soletta, dato che $q_{Rd} \le q_{d,max}$ con Φ = 2.0

$$q_{d,max} = g_k + \Phi \cdot q_k + \psi_{21} \cdot q_{k1}$$

$$q_{d max} = 7.5 + 1.6 + 2.0 \cdot 100 + 0.3 \cdot 2.0 = 209.7 \text{ kN/m}^2$$

$$q_{Rd}$$
= 131.9 kN/m² $\leq q_{d max}$ = 209.7 kN/m²

Altezza statica effettiva per il calcolo delle resistenze al taglio:

$$d_v = \frac{267 + 251}{2} = 259 \text{ mm}$$

Forza di taglio sul lato lungo (y):

$$v_{yd} = q_{Rd} \cdot \frac{\left(2 \cdot I_y - I_{x^-} d_v\right) \cdot \left(I_x - d_v\right)}{4 \cdot \left(I_y - d_v\right)}$$

$$v_{yd} = 131.9 \cdot \frac{\left(2 \cdot 8.9 - 5.9 - 0.259\right) \cdot \left(5.9 - 0.259\right)}{4 \cdot \left(8.9 - 0.259\right)} = 250.6 \text{ kN/m}$$

Forza di taglio sul lato corto (x):

$$v_{xd} = q_{Rd} \cdot \frac{(I_x - d_v) \cdot (I_x - d_v)}{4 \cdot (I_x - d_v)}$$

$$v_{xd} = 131.9 \cdot \frac{(5.9 - 0.259) \cdot (5.9 - 0.259)}{4 \cdot (5.9 - 0.259)} = 186 \text{ kN/m}$$

Resistenza al taglio con armatura di taglio

La resistenza al taglio con armatura di taglio viene calcolata con un braccio di leva delle forze interne di $z = 0.95 \cdot d = 0.95 \cdot 259 = 246$ mm .

 $v_{Rd,c}$ = 2'977 kN/m

Geometria

Braccio di leva delle forze interne z = 246 mm

Resistenza al taglio con armatura di taglio (SIA 262:2013 4.3.3.3)

Inclinazione del campo di pressione $\alpha = 45^{\circ}$

Armatura di taglio

Diametro ϕ 10 mm Distanza in verticale dal bordo ϕ 10 mm Distanza parallela dal bordo ϕ 10 mm Distanza parallela dal bordo ϕ 11 mm Distanza parallela dal bordo ϕ 12 mm Distanza parallela dal bordo ϕ 13 mm Distanza parallela dal bordo ϕ 14 mm Distanza parallela dal bordo ϕ 15 mm Distanza parallela dal bordo ϕ 16 mm Distanza parallela dal bordo ϕ 17 mm Distanza parallela dal bordo ϕ 10 mm ϕ

Coefficiente di riduzione della resistenza a $k_c = 0.55$

compressione del calcestruzzo

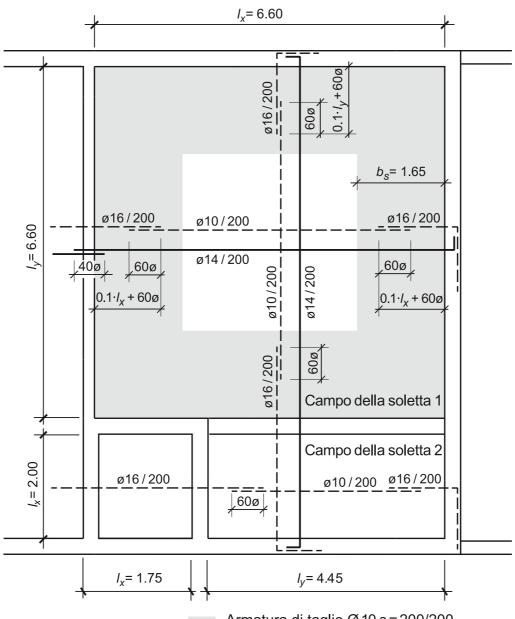
Resistenza del campo di compressione

del calcestruzzo

$$v_{Rd,s}$$
 = 290 kN/m > v_{yd} = 250.6 kN/m
 $v_{Rd,c}$ = 2'977 kN/m > v_{vd} = 250.6 kN/m

Su tutti e quattro i bordi della soletta è necessaria un'armatura di taglio. Larghezza con armatura di taglio

$$b_s = \max (2 \cdot d_v, I_x/4) = I_x/4 = 5.9/4 \approx 1.50 \text{ m}$$


Soletta dello scomparto 2 1.4

1.4.1 Valore di dimensionamento delle azioni

La soletta dello scomparto 2 viene suddivisa in due campi. Il carico della soletta corrisponde al valore indicato per lo scomparto 1.

$$q_d = g_k + \Phi \cdot q_k + \psi_{21} \cdot q_{k1}$$

 $q_d = 7.5 + 1.6 + 1.2 \cdot 100 + 0.3 \cdot 2.0 = 129.7 \text{ kN/m}^2$

1.4.2 **Armatura**

Armatura di taglio Ø 10 s = 200/200

1.4.3 Sicurezza strutturale soggetta a flessione

Campo delle solette

Resistenze ultime alla flessione

Indice	Posizione	Armatura	a _{s,ef} [mm²/m]	d [mm]	ρ _{ef} [%]	m _{Rd} [kNm/m]	Osservazioni
x+ y+	Campo Direzione x Direzione y	ø14/200 ø14/200	770 770	268 254	0.29 0.30	121 115	
x1-	Parete intermedia sinistra	ø16/200	1'005	267	0.38	157	
x2-	Parete perimetrale destra	ø16/200	1'005	252	0.40	148	Parete determinante
y1-	Architrave inferiore	ø16/200	1'005	251	0.40	147	
y2-	Parete perimetrale superiore	ø16/200	1'005	251	0.40	147	

Carico limite a flessione

$$q_{Rd} = \left[\frac{12 \cdot (m_{xRd1}^{-} + 2 \cdot m_{xRd}^{+} + m_{xRd2}^{-})}{3 \cdot I_{x}^{2} - \frac{I_{x}^{3}}{I_{y}}} + \frac{12 \cdot (m_{yRd1}^{-} + 2 \cdot m_{yRd}^{+} + m_{yRd2}^{-})}{3 \cdot I_{x} \cdot I_{y} - I_{x}^{2}} \right]$$

$$q_{Rd} = \left[\frac{12 \cdot (157 + 2 \cdot 121 + 148)}{3 \cdot 6.6^2 - \frac{6.6^3}{6.6}} + \frac{12 \cdot (147 + 2 \cdot 115 + 147)}{3 \cdot 6.6 \cdot 6.6 - 6.6^2} \right] = 147.5 \text{ kN/m}^2$$

$$q_{Rd}$$
 = 147.5 kN/m² > q_d = 129.7 kN/m²

Campo della soletta 2

Resistenze ultime alla flessione

Indice	Posizione	Armatura	a _{s,ef} [mm²/m]	d [mm]	ρ _{ef} [%]	m _{Rd} [kNm/m]	Osservazioni
x+ y+	Campo Direzione x Direzione y	ø14/200 ø14/200	770 770	254 268	0.30 0.29	115 121	
y1-	Parete della chiusa sinistra	ø16/200	1'005	267	0.38	157	
y2-	Parete perimetrale destra	ø16/200	1'005	252	0.40	148	Parete determinante
x1-	Architrave	ø16/200	1'005	251	0.40	147	
x2-	Parete perimetrale inferiore	ø16/200	1'005	251	0.40	147	

Carico limite a flessione

$$q_{Rd} = \left[\frac{12 \cdot (m_{xRd1}^{-} + 2 \cdot m_{xRd}^{+} + m_{xRd2}^{-})}{3 \cdot {I_{x}}^{2} - \frac{{I_{x}}^{3}}{I_{y}}} + \frac{12 \cdot (m_{yRd1}^{-} + 2 \cdot m_{yRd}^{+} + m_{yRd2}^{-})}{3 \cdot {I_{x}} \cdot {I_{y}} - {I_{x}}^{2}} \right]$$

$$q_{Rd} = \left[\frac{12 \cdot (147 + 2 \cdot 115 + 147)}{3 \cdot 2.0^2 - \frac{2.0^3}{4.45}} + \frac{12 \cdot (157 + 2 \cdot 121 + 148)}{3 \cdot 2.0 \cdot 4.45 - 2.0^2} \right] = 905.5 \text{ kN/m}^2$$

$$q_{Rd}$$
 = 905.5 kN/m² > q_d = 129.7 kN/m²

1.4.4 Resistenza ultima a taglio

Campo della soletta 1

Verifica della resistenza ultima a taglio con il carico limite a flessione della soletta, dato che $q_{Rd} \leq q_{d,max}$ con Φ = 2.0

$$q_{d,max} = g_k + \Phi \cdot q_k + \psi_{21} \cdot q_{k1}$$

 $q_{Rd} = 147.5 \,\text{kN/m}^2 \le q_{d,max} = 209.7 \,\text{kN/m}^2$

Altezza statica effettiva per il calcolo delle resistenze al taglio:

$$d_v = \frac{267 + 251}{2} = 259 \text{ mm}$$

Forza di taglio sul lato lungo (y):

$$v_{yd} = q_{Rd} \cdot \frac{\left(2 \cdot I_y - I_{x^-} d_v\right) \cdot \left(I_x - d_v\right)}{4 \cdot \left(I_y - d_v\right)}$$

$$v_{yd} = 147.5 \cdot \frac{\left(2 \cdot 6.6 - 6.6 - 0.259\right) \cdot \left(6.6 - 0.259\right)}{4 \cdot \left(6.6 - 0.259\right)} = 233.8 \text{ kN/m}$$

Forza di taglio sul lato corto (x):

$$v_{xd} = q_{Rd} \cdot \frac{(I_x - d_v) \cdot (I_x - d_v)}{4 \cdot (I_x - d_v)}$$

$$v_{xd} = 147.5 \cdot \frac{(6.6 - 0.259) \cdot (6.6 - 0.259)}{4 \cdot (6.6 - 0.259)} = 233.8 \text{ kN/m}$$

Resistenza al taglio con armatura di taglio

La resistenza al taglio con armatura di taglio è stata già calcolata nel capitolo 1.3.5 ed è pari a:

$$v_{Rd,s}$$
 = 290 kN/m > v_{yd} = 233.8 kN/m
 $v_{Rd,c}$ = 2'977 kN/m> v_{yd} = 233.8 kN/m

Su tutti e quattro i bordi della soletta è necessaria un'armatura di taglio. Larghezza con armatura di taglio

$$b_s = \max (2 \cdot d_v, I_x/4) = I_x/4 = 6.6 / 4 = 1.65 \text{ m}$$

Campo della soletta 2

Il campo della soletta 2 mantiene l'elasticità. La verifica della resistenza ultima a taglio viene eseguita con $q_{\rm d.max}$

$$q_{d,max} = g_k + \Phi \cdot q_k + \psi_{21} \cdot q_{k1} \quad \text{con } \Phi = 2.0$$

 $q_{d,max} = 9.1 + 1.6 + 2.0 \cdot 100 + 0.3 \cdot 2.0 = 209.7 \,\text{kN/m}^2$

Altezza statica effettiva per il calcolo delle resistenze al taglio:

$$d_v = \frac{267 + 251}{2} = 259 \text{ mm}$$

La forza di taglio del sistema elastico viene calcolata con il seguente metodo semplificato: Forza di taglio sul lato lungo (y):

$$v_{yd} \approx q_{d, max} \cdot \frac{(I_x - d_v)}{2}$$

 $v_{yd} = 209.7 \cdot \frac{(2.0 - 0.259)}{2} = 182.5 \text{ kN/m}$

Resistenza al taglio senza armatura di taglio

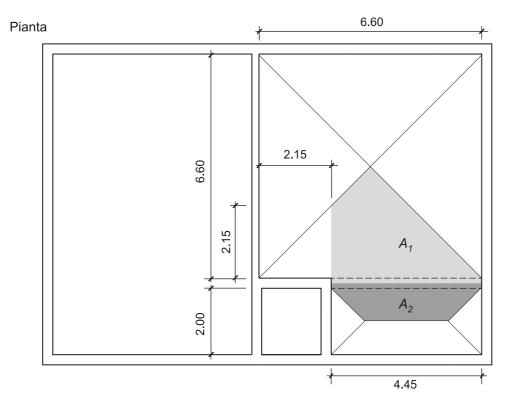
Si presume che non si possano escludere deformazioni plastiche dell'armatura a flessione. La resistenza al taglio senza armatura di taglio viene quindi calcolata nel seguente modo:

Geometria

Altezza statica d = 259 mm

Resistenza al taglio senza armatura di taglio (SIA 262:2013 4.3.3.2)

Stato dell'armatura a flessione Plastico
Dilatazione dell'armatura a flessione $\varepsilon_{V}=0.0044$ Coefficiente grana max. $k_{g}=1.00$ Coefficiente resistenza al taglio $k_{d}=0.47$ Altezza statica effettiva $d_{V}=259 \text{ mm}$ Resistenza al taglio $v_{Rd}=206 \text{ kN/m}$


$$v_{Rd} = 206 \text{ kN/m} > v_{vd} = 182.5 \text{ kN/m}$$

Non è necessaria un'armatura di taglio sui bordi della soletta.

1.5 Appoggio sostitutivo 1

1.5.1 Valore di dimensionamento delle azioni

L'architrave che funge da appoggio sostitutivo, viene dimensionato con le forze di reazione dei campi delle solette 1 e 2 dello scomparto 2.

Aree di influsso dei carichi delle platee dell'architrave

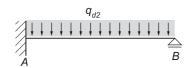
Forze di reazione del campo della soletta 1

Le forze di reazione del campo della soletta 1 devono essere aumentate del 10% secondo il capitolo 7.7.5, ITC 2017. Vengono applicate sull'architrave come carico triangolare con il metodo semplificato.

$$A_1 = \frac{1}{4} \cdot 6.60^2 - \frac{2.15 \cdot 2.15}{2} + 4.45 \cdot \frac{0.3}{2} = 9.25 \text{ m}^2$$

$$q_{d1} = 1.1 \cdot 2 \cdot q_{Rd} \cdot \frac{A_1}{I}$$

$$q_{d1} = 1.1 \cdot 2 \cdot 147.5 \cdot \frac{9.25}{445} = 674.5 \text{ kN/m}$$

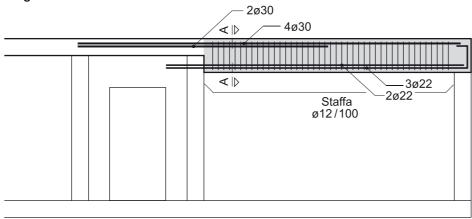

Forze di reazione del campo della soletta 2

Le forze di reazione del campo della soletta 2 vengono applicate sull'architrave come carico ripartito in maniera uniforme.

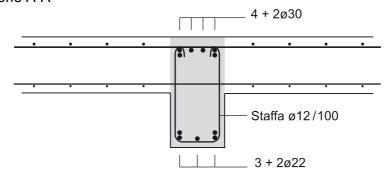
$$A_2 = \frac{1}{4} \cdot (2 \cdot 4.45 - 2.00) \cdot 2.0 + 4.45 \cdot \frac{0.3}{2} = 4.12 \text{ m}^2$$

$$q_{d2} = q_{d,max} \cdot \frac{A_2}{I}$$

$$q_{d2} = 209.7 \cdot \frac{4.12}{4.45} = 194.1 \,\text{kN/m}$$



1.5.2 Dimensioni di taglio sul sistema elastico


Dimensione di taglio	Forze di reazione del campo della soletta 1	Forze di reazione del campo della soletta 2	Totale
Momento di incastro $M_{A,d}$	$\frac{-q_{d1} \cdot I^2}{15} = -890 \text{ kNm}$	$\frac{-q_{d2} \cdot I^2}{8}$ = -480 kNm	- 1'370 kNm
Momento flettente $M_{max,d}$	$\frac{q_{d1} \cdot I^2}{33.54} = 398 \text{ kNm}$	$\frac{9 \cdot q_{d2} \cdot I^2}{128} = 270 \text{ kNm}$	~ 668 kNm
Forza applicata A _d	$\frac{2 \cdot q_{d1} \cdot I}{5} = 1'200 \text{ kN}$	$\frac{5 \cdot q_{d2} \cdot I}{8} = 540 \text{ kN}$	1'740 kN
Forza applicata B _d	$\frac{q_{d1} \cdot I}{10} = 300 \text{ kN}$	$\frac{3 \cdot q_{d2} \cdot I}{8} = 324 \text{ kN}$	624 kN

1.5.3 Armatura

Disegno

Sezione A-A

1.5.4 Sicurezza strutturale soggetta a flessione

Resistenza ultima alla flessione per armatura inferiore

Geometria

Altezza componente	h = 700 mm
Larghezza componente	b = 300 mm
Rivestimento in calcestruzzo	$c_{nom} = 25 \text{ mm}$
Disposizione armatura	2° strato
Diametro 1° strato	ø = 12 mm

Calcolo della resistenza ultima alla flessione

armatura inferiore

Diametro	ø = 22 mm
Numero	n = 5
strati	a = 2
Sezione acciaio	A_s '= 1901 mm ²
Altezza della zona soggetta a pressoflessione	x = 101.6 mm
altezza statica	<i>d</i> = 641.0 mm
Altezza di riferimento zona soggetta a	x/d = 0.16
compressione	
Braccio di leva delle forze interne	z = 597.8 mm
Resistenza ultima alla flessione	M_{Rd} = 682 kNm

 M_{Rd} = 682 kNm > $M_{max,d}$ = 668 kNm

Resistenza ultima alla flessione per armatura superiore

La staffa si trova nel terzo strato.

Ricopertura fino all'armatura a flessione: $c_{nom} = 25 + 16 + 16 = 57$ mm

Il calcolo dell'altezza della zona soggetta a pressoflessione viene eseguito in base all'armatura di compressione.

Geometria

Altezza componente h = 700 mmLarghezza componente b = 300 mmRivestimento in calcestruzzo $c_{nom} = 57 \text{ mm}$

Calcolo della resistenza ultima alla flessione

Armatura superiore

Diametro \emptyset = 30 mmNumeron = 6stratia = 2

Sezione acciaio $A_s = 4241 \text{ mm}^2$ altezza statica d = 613.0 mm

Armatura inferiore

Diametro $\emptyset = 22 \text{ mm}$ Numero n = 5strati a = 2

Sezione acciaio $A_s' = 1901 \text{ mm}^2$ altezza statica d' = 59 mmAltezza della zona soggetta a x = 168.5 mm

pressoflessione

Altezza di riferimento zona soggetta a x/d = 0.27

compressione

Braccio di leva delle forze interne z = 545.1 mmResistenza ultima alla flessione $M_{Rd} = 1387 \text{ kNm}$

 M_{Rd} = 1'387 kNm > $M_{A,d}$ = 1'370 kNm

1.5.5 Resistenza ultima a taglio

Dato che le resistenze ultime alla flessione hanno all'incirca una portata simile ai momenti flettenti, la resistenza ultima a taglio viene calcolata con il valore di calcolo delle azioni e non con il carico limite a flessione della trave.

Appoggio A

Massima forza applicata

$$A_d = 1'740 \text{ kN}$$

Si presuppone l'inclinazione del campo di pressione con α = 30°. La forza di taglio determinante si trova alla distanza di $a = z \cdot \cot(\alpha) = 545 \cdot \cot(30^\circ) = 944$ mm dal bordo dell'appoggio ed è pari a:

$$V_d = A_d - \left(\frac{1}{2} \cdot q_{d1} \cdot \left(1 + \frac{l - a}{l}\right) + q_{d2}\right) \cdot a$$

$$V_d = 1'740 - \left(\frac{1}{2} \cdot 674.5 \cdot \left(1 + \frac{4.45 - 0.944}{4.45}\right) + 194.1\right) \cdot 0.944 = 988 \text{ kN}$$

Resistenza al taglio con armatura di taglio

Geometria

Braccio di leva delle forze interne z = 545 mmLarghezza componente $b_w = 300 \text{ mm}$

Resistenza al taglio con armatura di taglio (SIA 262:2013 4.3.3.3)

Inclinazione del campo di pressione $\alpha = 30^{\circ}$

Armatura di taglio

Diametro $\emptyset = 12 \text{ mm}$ Distanza S = 100 mm

 $\begin{array}{ll} \text{Numero sezioni} & 2 \\ \text{Inclinazione dell'armatura di taglio} & \beta = 0^{\circ} \\ \text{Percentuale dell'armatura di taglio} & \rho_{\text{w}} = 0.75 \% \end{array}$

Resistenza dell'armatura di taglio $V_{Rd,s}$ = 1'281 kN

Coefficiente di riduzione della resistenza a $k_c = 0.55$

compressione del calcestruzzo

Resistenza del campo di compressione $V_{Rd,c}$ = 1'713 kN del calcestruzzo

 V_{Rds} = 1'281 kN > V_d = 988 kN

 $V_{Rd,c}$ = 1'713 kN > V_d = 988 kN

Appoggio B

Massima forza applicata

$$B_d = 624 \text{ kN}$$

Si presuppone l'inclinazione del campo di pressione con α = 45°. La forza di taglio determinante si trova alla distanza di $a = z \cdot \cot(\alpha) = 597 \cdot \cot(45^{\circ}) = 597$ mm dal bordo dell'appoggio ed è pari a:

$$V_d \approx B_d - q_{d2} \cdot a$$

$$V_d \approx 624 - 194.1 \cdot 0.597 = 508 \text{ kN}$$

Resistenza al taglio con armatura di taglio

Geometria

Braccio di leva delle forze interne z = 597 mmLarghezza componente $b_{w} = 300 \text{ mm}$

Resistenza al taglio con armatura di taglio (SIA 262:2013 4.3.3.3)

Inclinazione del campo di pressione α = 45°

Armatura di taglio

Diametro ø = 12 mmDistanza s = 100 mm

Numero sezioni 2 $\beta = 0^{\circ}$ Inclinazione dell'armatura di taglio

Percentuale dell'armatura di taglio $\rho_{\rm w}$ = 0.75 % Resistenza dell'armatura di taglio $V_{Rd.s} = 810 \text{ kN}$

Coefficiente di riduzione della resistenza a

compressione del calcestruzzo

Resistenza del campo di compressione $V_{Rd,c} = 2'167 \text{ kN}$

del calcestruzzo

$$V_{Rd,s}$$
 = 810 kN > V_d = 508 kN
 $V_{Rd,c}$ = 2'167 kN > V_d = 508 kN

Ancoraggio dell'armatura longitudinale

$$F_d = B_d \cdot \cot \alpha = 624 \cdot \cot (45^\circ) = 624 \text{ kN}$$

Resistenza a trazione dell'armatura longitudinale (3 barre di armatura ø = 22 mm interamente ancorate dietro l'appoggio)

 $k_c = 0.55$

$$F_{Rd} = A_s \cdot f_{sd} = 3 \cdot \pi \cdot \frac{22^2}{4} \cdot 600 \cdot 10^{-3} = 684 \text{ kN}$$

$$F_{Rd} = 684 \text{ kN} > F_d = 624 \text{ kN}$$

1.6 Pareti perimetrali interrate

Rapporto luce $L_v/L_x = 8.9/2.4 = 3.7 > 2.4$

Le pareti perimetrali interrate verranno dimensionate come solette portanti in un'unica direzione.

1.6.1 Valore di dimensionamento delle azioni

Il dimensionamento delle pareti perimetrali interrate viene effettuato secondo il capitolo 6.5.1, ITC 2017. Ipotesi terreno di fondazione:

Angolo di resistenza al taglio $\varphi = 30^{\circ}$

Peso spazio umido $\gamma = 20 \text{ kN/m}^3$

Coefficiente di pressione statica della terra $K_0 = 1 - \sin \varphi = 0.5$

Pressione statica della terra al centro della parete

$$e_{0,k} = K_0 \cdot \left(h_D + \frac{I}{2}\right) \cdot \gamma$$

$$e_{0,k} = 0.5 \cdot \left(0.3 + \frac{2.40}{2}\right) \cdot 20 = 15 \text{ kN/m}^2$$

L'effetto in seguito all'onda d'urto dell'aria e all'onda sismica viene definito alla figura 22, ITC 2017

$$q_k = 100 + 340 \cdot \frac{a}{l}$$

$$q_k = 100 + 340 \cdot \frac{0}{2.40} = 100 \,\mathrm{kN/m^2}$$

Valore di dimensionamento dell'azione

$$q_d = e_{0.k} + \Phi \cdot q_k$$

$$q_d = 15 + 1.2 \cdot 100 = 135 \,\text{kN/m}^2$$

1.6.2 Armatura

Armatura minima zona soggetta a trazione

 $a_s = 0.18 \% \cdot 270 \cdot 1'000 = 486 \text{ mm}^2/\text{m} \rightarrow \emptyset 12/200$

Armatura minima zona soggetta a compressione

 $a_s = 0.10 \% \cdot 260 \cdot 1'000 = 260 \text{ mm}^2/\text{m} \rightarrow \emptyset 10/200$

1.6.3 Resistenze ultime alla flessione

Indice	Posizione	Armatura	a _{s,ef} [mm²/m]	d [mm]	ρ _{ef} [%]	m _{Rd} [kNm/m]	Osservazioni
	Campo						
χ+	Direzione x	ø12/200	565	269	0.21	90	
x1-	Plinto di fondazione	ø16/200	1'005	202	0.50	118	Plinto di fondazione determinante
x2-	Soletta	ø16/200	1'005	252	0.40	148	

1.6.4 Sicurezza strutturale soggetta a flessione

Carico limite a flessione

$$q_{Rd} = \frac{8}{L_x^2} \cdot \left(m_{xRd}^+ + \frac{m_{xRd1}^- + m_{xRd2}^-}{2} \right) = \frac{8}{2.4^2} \cdot \left(90 + \frac{118 + 148}{2} \right) = 310 \, \text{kN/m}^2$$

$$q_{Rd} = 310 \,\mathrm{kN/m^2} > q_d = 135 \,\mathrm{kN/m^2}$$

1.6.5 Resistenza ultima a taglio

La parete perimetrale mantiene l'elasticità. La verifica della resistenza ultima a taglio viene eseguita con $q_{d,max}$

$$q_{d.max} = e_{0,k} + \Phi \cdot q_k \quad con \ \Phi = 2.0$$

$$q_{d max} = 15 + 2 \cdot 100 = 215 \text{ kN/m}^2$$

Altezza statica effettiva per il calcolo delle resistenze al taglio:

$$d_v = 252 \text{ mm}$$

Forza di taglio sul lato lungo (y):

$$v_{yd} = q_{d,max} \cdot \frac{(I_x - d_v)}{2} = 215 \cdot \frac{(2.4 - 0.252)}{2} = 230.9 \text{ kN/m}$$

Resistenza al taglio senza armatura di taglio

Lo sfruttamento dell'armatura a flessione viene calcolato su un'asta fissata su entrambi i lati.

Momento di incastro

 $m_d (\Phi = 2.0) = \frac{q_{d,max} \cdot I^2}{12} = \frac{215 \cdot 2.4^2}{12} = 103 \text{ kNm/m}$

Resistenza ultima alla flessione della parete m_{Rd} = 148 kNm/m

Sfruttamento dell'armatura a flessione

 $m_d (\Phi = 2.0) / m_{Rd} = 103/148 = 0.70$

Geometria

altezza statica

d = 252 mm

Resistenza al taglio senza armatura di taglio (SIA 262:2013 4.3.3.2)

Sfruttamento dell'armatura a flessione

 $m_d / m_{Rd} = 0.70$

Stato dell'armatura a flessione

Elastico

Dilatazione dell'armatura a flessione

 $\varepsilon_{\rm V}$ = 0.0020

Coefficiente grana max.

 $k_q = 1.00$

Coefficiente resistenza al taglio

 $k_d = 0.66$

Altezza statica effettiva

 $d_v = 252 \text{ mm}$

Resistenza al taglio

 $v_{Rd} = 283 \text{ kN/m}$

$$v_{Rd}$$
 = 283 kN/m > v_{vd} = 230.9 kN/m

Non è necessaria un'armatura di taglio.

1.7 Pareti perimetrali verso cantinati non protetti

Rapporto luce $L_v/L_x = 5.9/2.4 = 2.5 > 2.4$

Le pareti perimetrali verso i cantinati non protetti vengono dimensionate come solette portanti in una sola direzione.

1.7.1 Valore di dimensionamento delle azioni

Il dimensionamento delle pareti perimetrali interrate verso i cantinati non protetti viene effettuato secondo il capitolo 6.5.2, ITC 2017.

Per
$$\alpha$$
 < 25 % pari a q_k = 150 kN/m²

$$q_d = \Phi \cdot q_k$$

$$q_d = 1.2 \cdot 150 = 180 \,\mathrm{kN/m^2}$$

1.7.2 Armatura

Armatura minima zona soggetta a trazione a_s = 0.18 % · 270 · 1'000 = 486 mm²/m \rightarrow ø12/200

Armatura minima zona soggetta a compressione

 $a_s = 0.10 \% \cdot 270 \cdot 1'000 = 270 \text{ mm}^2/\text{m} \rightarrow \emptyset 10/200$

1.7.3 Resistenze ultime alla flessione

Indice	Posizione	Armatura	a _{s,ef} [mm²/m]	d [mm]	ρ _{ef} [%]	m _{Rd} [kNm/m]	Osservazioni
	Campo						
χ+	Direzione x	ø12/200	565	269	0.21	90	
x1-	Plinto di fondazione	ø16/200	1'005	189	0.54	108	Plinto di fondazione determinante
x2-	Soletta	ø16/200	1'005	251	0.40	147	Soletta determinante

1.7.4 Sicurezza strutturale soggetta a flessione

Carico limite a flessione

$$q_{Rd} = \frac{8}{L_x^2} \cdot \left(m_{xRd}^+ + \frac{m_{xRd1}^- + m_{xRd2}^-}{2} \right)$$

$$q_{Rd} = \frac{8}{2.4^2} \cdot \left(90 + \frac{108 + 147}{2}\right) = 302 \,\text{kN/m}^2$$

$$q_{Rd} = 302 \,\text{kN/m}^2 > q_d = 180 \,\text{kN/m}^2$$

1.7.5 Resistenza ultima a taglio

La parete perimetrale verso i cantinati non protetti mantiene l'elasticità. La verifica della resistenza ultima a taglio viene eseguita con $q_{d,max}$

$$q_{d,max} = \Phi \cdot q_k$$
; $\Phi = 2.0$

$$q_{d,max} = 2 \cdot 150 = 300 \,\mathrm{kN/m^2}$$

Altezza statica effettiva per il calcolo delle resistenze al taglio:

$$d_{v} = 269 \text{ mm}$$

Forza di taglio sul lato lungo (y):

$$v_{yd} = q_{d,max} \cdot \frac{(I_x - d_v)}{2}$$

$$v_{yd} = 300 \cdot \frac{(2.4 - 0.252)}{2} = 319.7 \text{ kN/m}$$

Resistenza al taglio senza armatura di taglio

Si presume che non si possano escludere deformazioni plastiche dell'armatura a flessione. La resistenza al taglio senza armatura di taglio viene quindi calcolata nel seguente modo:

Geometria

altezza statica d = 259 mm

Resistenza al taglio senza armatura di taglio (SIA 262:2013 4.3.3.2)

Stato dell'armatura a flessione Plastico
Dilatazione dell'armatura a flessione $\varepsilon_{v} = 0.0044$ Coefficiente grana max. $k_{g} = 1.00$ Coefficiente resistenza al taglio $k_{d} = 0.47$ Altezza statica effettiva $d_{v} = 259 \text{ mm}$ Resistenza al taglio $v_{Rd} = 206 \text{ kN/m}$

$$v_{Rd}$$
 = 206 kN/m < v_{vd} = 319.7 kN/m

Resistenza al taglio con armatura di taglio

La resistenza al taglio con armatura di taglio viene calcolata con un braccio di leva delle forze interne di $z = 0.95 \cdot d = 0.95 \cdot 269 = 256$ mm e con un'inclinazione del campo di pressione di $\alpha = 30^{\circ}$.

Geometria

Braccio di leva delle forze interne z = 256 mm

Resistenza al taglio con armatura di taglio (SIA 262:2013 4.3.3.3)

Inclinazione del campo di pressione $\alpha = 30^{\circ}$

Armatura di taglio

 $\begin{array}{ll} \mbox{Diametro} & \mbox{\emptyset} = 10 \mbox{ mm} \\ \mbox{Distanza in verticale dal bordo} & \mbox{s_{\perp}} = 200 \mbox{ mm} \\ \mbox{Distanza parallela dal bordo} & \mbox{s_{\parallel}} = 200 \mbox{ mm} \\ \end{array}$

Inclinazione dell'armatura di taglio β = 0° Percentuale dell'armatura di taglio ρ_w = 0.20 % Resistenza dell'armatura di taglio $\nu_{Rd,s}$ = 522 kN/m

Coefficiente di riduzione della resistenza a $k_c = 0.55$

compressione del calcestruzzo

Resistenza del campo di compressione del calcestruzzo

 $v_{Rd,c}$ = 2'683 kN/m

$$v_{Rd,s}$$
 = 522 kN/m > v_{yd} = 319.7 kN/m
 $v_{Rd,c}$ = 2'683 kN/m > v_{vd} = 319.7 kN/m

Lungo tutti i bordi lunghi della soletta è necessaria un'armatura di taglio.

Area con armatura di taglio

Resistenza al taglio senza armatura di taglio v_{Rd}

$$v_{Rd} = 206 \text{ kN/m}$$

Larghezza con armatura di taglio:

$$b_s = \frac{L_x}{2} \cdot \left(1 - \frac{v_{Rd}}{q_{d,max} \cdot \frac{L_x}{2}} \right)$$

$$b_s = \frac{2.4}{2} \cdot \left(1 - \frac{206}{300 \cdot \frac{2.4}{2}} \right) = 0.50 \text{ m}$$

1.8 Platea scomparto 1

1.8.1 Valore di dimensionamento delle azioni

Valore di dimensionamento della sollecitazione della platea

$$q_{0d}, q_{sd} = \delta \left(g_k + \Phi \cdot q_k + \psi_{21} \cdot q_{k1} \right)$$

- δ Coefficiente di ripartizione delle azioni del terreno di fondazione
- g_k azioni permanenti senza la parte della platea, ripartite in maniera uniforme
- Φ fattore di carico dinamico
- q_k valore caratteristico delle azioni derivanti dal terreno di fondazione
- ψ_{21} coefficiente di riduzione per il valore quasi permanente di un'azione concomitante variabile
- q_{k1} Valore caratteristico di un'azione concomitante

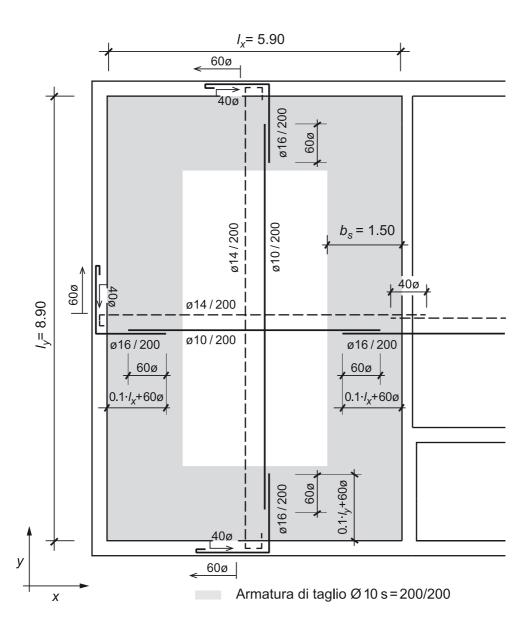
Per il terreno di fondazione di tipo la vale

 δ = 0.60 per l'intera platea (ITC 2017, capitolo 6.4)

Per la flessione

$$\Phi$$
 = 1.2 (ITC 2017, tabella 4)

$$q_k = 100 \text{ kN/m}^2 \text{ (ITC 2017, capitolo 6.4)}$$


$$g_k + \psi_{21} \cdot q_{k1} = 40 \text{ kN/m}^2$$

$$q_d = 0.6 \cdot (40 + 1.2 \cdot 100) = 96 \text{ kN/m}^2$$

Per il taglio

$$q_d = 1.6 \cdot q_{Rd}$$
 ovvero $q_d = 1.6 \cdot q_{d max}$

1.8.2 Armatura

1.8.3 Resistenze ultime alla flessione

Indice	Posizione	Armatura	a _{s,ef} [mm²/m]	d [mm]	ρ _{ef} [%]	m _{Rd} [kNm/m]
x+ y+	Campo Direzione x Direzione y	ø14/200 ø14/200	770 770	218 204	0.35 0.38	98 92
x1-	Parete perimetrale sinistra	ø16/200	1'005	202	0.50	118
x2-	Parete intermedia destra	ø16/200	1'005	202	0.50	118
y1-	Parete perimetrale inferiore	ø16/200	1'005	186	0.54	108
y2-	Parete perimetrale superiore	ø16/200	1'005	186	0.54	108

1.8.4 Sicurezza strutturale soggetta a flessione

Carico limite a flessione

$$q_{Rd} = \left[\frac{12 \cdot (m_{xRd1}^{-} + 2 \cdot m_{xRd}^{+} + m_{xRd2}^{-})}{3 \cdot I_{x}^{2} - \frac{I_{x}^{3}}{I_{y}}} + \frac{12 \cdot (m_{yRd1}^{-} + 2 \cdot m_{yRd}^{+} + m_{yRd2}^{-})}{3 \cdot I_{x} \cdot I_{y} - I_{x}^{2}} \right]$$

$$q_{Rd} = \left[\frac{12 \cdot (118 + 2 \cdot 98 + 118)}{3 \cdot 5.9^2 - \frac{5.9^3}{8.9}} + \frac{12 \cdot (108 + 2 \cdot 92 + 108)}{3 \cdot 5.9 \cdot 8.9 - 5.9^2} \right] = 102.8 \text{ kN/m}^2$$

$$q_{Rd} = 102.8 \text{ kN/m}^2 > q_d = 96 \text{ kN/m}^2$$

1.8.5 Resistenza ultima a taglio

Per la verifica della resistenza ultima a taglio l'azione del terreno di fondazione di tipo l_a sulla platea è pari al valore in base al capitolo 6.4, ITC 2017

$$q_d = 1.6 \cdot q_{Rd}$$

 $q_d = 1.6 \cdot 102.8 = 164.5 \,\text{kN/m}^2$

Altezza statica effettiva per il calcolo delle resistenze al taglio:

$$d_v = \frac{202 + 186}{2} = 194 \text{ mm}$$

Forza di taglio sul lato lungo (y):

$$v_{yd} = q_{Rd} \cdot \frac{\left(2 \cdot I_y - I_x - d_v\right) \cdot \left(I_x - d_v\right)}{4 \cdot \left(I_y - d_v\right)}$$

$$v_{yd} = 164.5 \cdot \frac{\left(2 \cdot 8.9 - 5.9 - 0.194\right) \cdot \left(5.9 - 0.194\right)}{4 \cdot \left(8.9 - 0.194\right)} = 315.5 \text{ kN/m}$$

Forza di taglio sul lato corto (x):

$$v_{xd} = q_{Rd} \cdot \frac{(l_x - d_v) \cdot (l_x - d_v)}{4 \cdot (l_x - d_v)}$$

$$v_{xd} = 164.5 \cdot \frac{(5.9 - 0.194) \cdot (5.9 - 0.194)}{4 \cdot (5.9 - 0.194)} = 234.7 \text{ kN/m}$$

Resistenza al taglio con armatura di taglio

La resistenza al taglio con armatura di taglio viene calcolata con un braccio di leva delle forze interne di $z = 0.95 \cdot d = 0.95 \cdot 194 = 184 \text{ mm}$.

Geometria

Braccio di leva delle forze interne z = 184 mm

Resistenza al taglio con armatura di taglio (SIA 262:2013 4.3.3.3)

Inclinazione del campo di α = 30 $^{\circ}$ pressione

Armatura di taglio

Diametro ø = 10 mmDistanza in verticale dal bordo $s_1 = 200 \text{ mm}$ Distanza parallela dal bordo $s_{||} = 200 \text{ mm}$

 $\beta = 0^{\circ}$ Inclinazione dell'armatura di taglio Percentuale dell'armatura di taglio $\rho_{\rm w}$ = 0.20 %

Resistenza dell'armatura di taglio $v_{Rd.s} = 375 \text{ kN/m}$ $k_c = 0.55$

Coefficiente di riduzione della resistenza

a compressione del calcestruzzo

Resistenza del campo di compressione $v_{Rd,c}$ = 1'928 kN/m

del calcestruzzo

 $v_{Rd,s}$ = 375 kN/m > v_{vd} = 315.5 kN/m $v_{Rd,c}$ = 1'928 kN/m > v_{vd} = 315.5 kN/m

Sui bordi viene posizionata un'armatura di taglio.

Larghezza con armatura di taglio

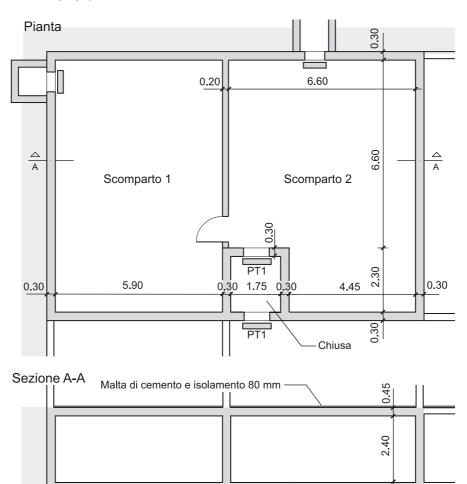
 $b_s = \max (2 \cdot d_v, I_x/4) = 5.9/4 = 1.50 \text{ m}$

Platea scomparto 2 1.9

Il dimensionamento della platea dello scomparto 2 viene eseguito in maniera analoga alla soletta dello scomparto 2. L'architrave come appoggio per le solette viene posizionato sotto la platea.

2 Costruzione di protezione con angolo rientrante

2.1 Scopo dell'esempio


In una costruzione di protezione delle stesse dimensioni del precedente esempio viene mostrato in che modo si può eseguire il dimensionamento in mancanza dell'architrave. In questo esempio lo spessore della soletta è pari a 450 mm.

In questo esempio la soletta della costruzione di protezione (entrambi gli scomparti) viene dimensionata con il metodo statico. In alternativa, la soletta dello scomparto 1 potrebbe essere dimensionata anche con il metodo cinematico

Le verifiche richieste per l'eventuale utilizzo in tempi di pace secondo la norma SIA 260 e seguenti non sono contenute in questo esempio.

2.2 Basi

2.2.1 Dimensioni

2.2.2 Materiali

Acciaio d'armatura B500B

Valore di dimensionamento del limite di snervamento $f_{sd} = 600 \text{ N/mm}^2$

Modulo di elasticità $E_{sd} = 205'000 \text{ N/mm}^2$

Calcestruzzo C30/37

Valore di calcolo della resistenza alla compressione $f_{cd} = 44 \text{ N/mm}^2$ Valore di calcolo della tensione tangenziale ultima $\tau_{cd} = 1.7 \text{ N/mm}^2$ Valore di dimensionamento della tensione composita $f_{bd} = 4.0 \text{ N/mm}^2$

Modulo di elasticità $E_{cm} = 35'000 \text{ N/mm}^2$

Grana max. degli inerti $D_{max} = 32 \text{ mm}$

Rivestimento armatura: (valore minimo / valore di calcolo)

verso terra 35 / 40 mm nell'edificio 20 / 25 mm

2.3 Ipotesi delle armature a flessione

2.3.1 Soletta

Armatura minima zona soggetta a trazione

 $a_{s,min} = 0.18 \% \cdot 420 \cdot 1'000 = 756 \text{ mm}^2/\text{m} \rightarrow \emptyset 14/200, \ a_s = 770 \text{ mm}^2/\text{m}$

Armatura minima zona soggetta a compressione:

 $a_{s,min}$ = 0.10 % · 420 · 1'000 = 420 mm²/m \rightarrow Ø14/200, a_s = 565 mm²/m

2.3.2 Componenti adiacenti

Posizione	Armatura	a _{s,ef} [mm²/m]	<i>d</i> [mm]	$ ho_{ ext{ef}}$ [%]	m_{Rd} [kNm/m]
Pareti perimetrali verso terra	ø14/200	770	253	0.30	114
Pareti perimetrali verso cantinati	ø14/200	770	268	0.29	121

2.4 Dimensionamento della soletta

Il dimensionamento della soletta viene eseguito con il metodo statico.

2.4.1 Valore di dimensionamento delle azioni

$$q_d = g_k + \Phi \cdot q_k + \psi_{21} \cdot q_{k1}$$
 Con $g_k = g_{k,EG} + g_{k,AL}$

 q_d valore di dimensionamento delle azioni sulla soletta

 $g_{\rm \textit{k.EG}}$ valore caratteristico del peso proprio della soletta

 $g_{k,AL}$ valore caratteristico del carico strutturale (80 mm di strato sulla soletta)

 Φ fattore di carico dinamico

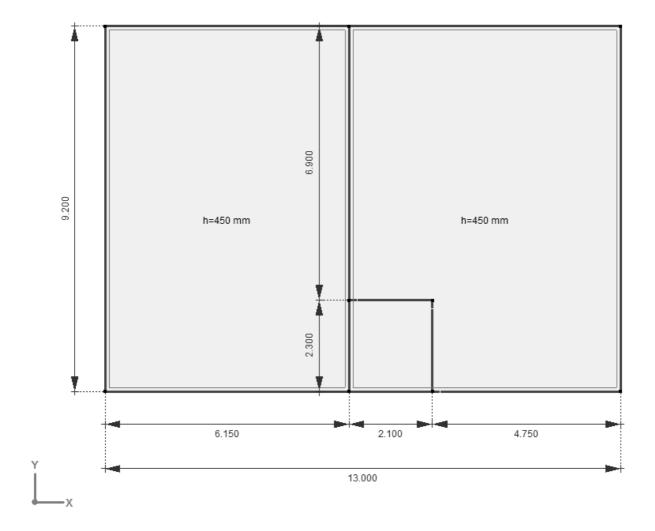
 q_k valore caratteristico dell'onda d'urto dell'aria

 ψ_{21} coefficiente di riduzione

 q_{k1} valore caratteristico del carico utile nell'edificio

$$g_{k,EG} = 0.45 \text{ m} \cdot 25 \text{ kN/m}^3 = 11.3 \text{ kN/m}^2$$

 $g_{k,AL} = 0.08 \text{ m} \cdot 20 \text{ kN/m}^3 = 1.6 \text{ kN/m}^2$


$$\Phi$$
 = 1.2 / 2.0 (ITC 2017, tabella 4)
 q_k = 100 kN/m² (ITC 2017, capitolo 6.3)

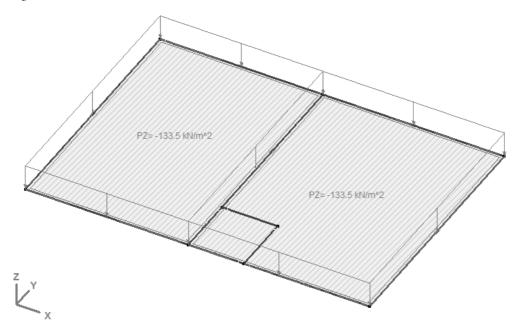
$$\psi_{21}$$
= 0.3 Categoria A1 (SIA 260, tabella 1) q_{k1} = 2.0 kN/m² Categoria A1 (SIA 261, tabella 8)

$$q_d = 11.3 + 1.6 + 1.2 \cdot 100 + 0.3 \cdot 2.0 = 133.5 \text{ kN/m}^2 \text{ per flessione}$$

$$q_{d, max}$$
 = 11.3 + 1.6 + 2.0 · 100 + 0.3 · 2.0 = 213.5 kN/m² per taglio / punzonamento

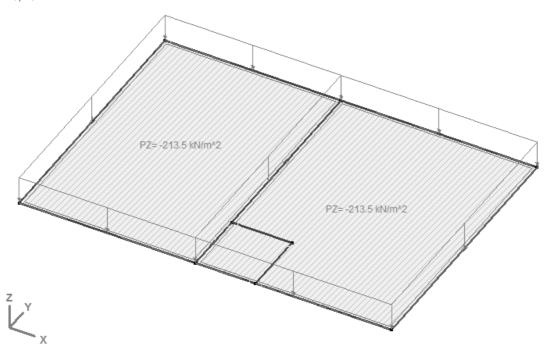
2.4.2 Modello statico

La soletta viene fissata in maniera elastica lungo le pareti perimetrali verso terra e quindi verso i cantinati. Il fissaggio presenta un momento limite che corrisponde alla resistenza ultima alla flessione della parete adiacente. Nelle pareti interne la soletta viene posizionata su appoggi lineari snodati.

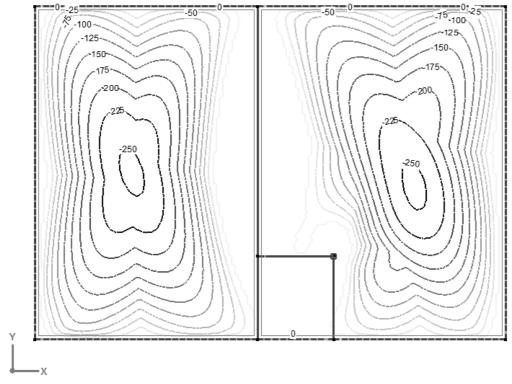

Le azioni verranno calcolate con un programma FE.

Convenzione utilizzata per la traccia: i momenti flettenti negativi creano sollecitazioni di trazione sul lato inferiore della soletta.

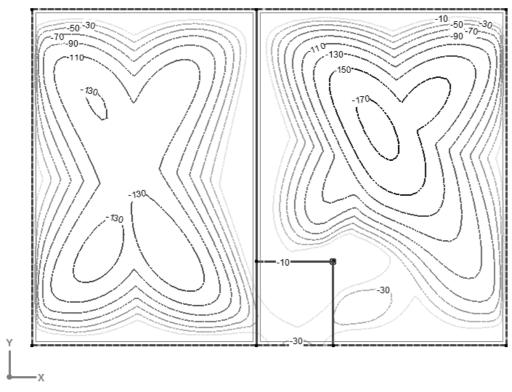
2.4.3 Tipi di carico


Carico per flessione

$$q_d = 133.5 \, \text{kN/m}^2$$

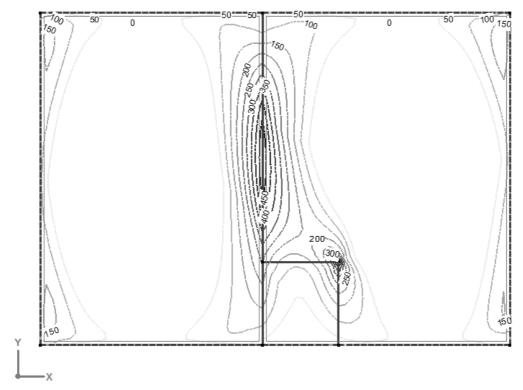

Carico per taglio

$$q_{d,max} = 213.5 \,\mathrm{kN/m^2}$$

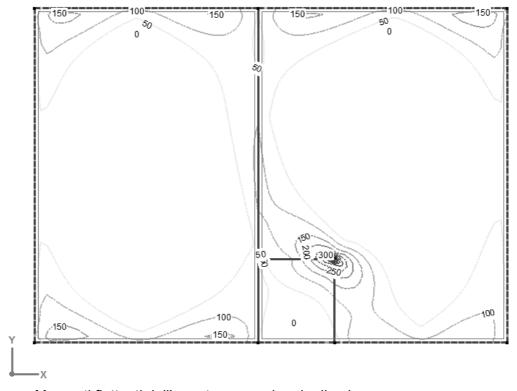


2.4.4 Sicurezza strutturale soggetta a flessione

Momenti flettenti degli strati di armatura inferiori



Momenti flettenti dell'armatura inferiore in direzione x



Momenti flettenti dell'armatura inferiore in direzione y

Momenti flettenti degli strati di armatura superiori

Momenti flettenti dell'armatura superiore in direzione x

Momenti flettenti dell'armatura superiore in direzione y

Resistenze ultime alla flessione

Armatura inferiore in direzione x

Geometria

Spessore soletta h = 450 mmRivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ Disposizione armatura 1. strato

Calcolo della resistenza ultima alla flessione

Armatura di base

Diametro \emptyset = 16 mm Distanza S = 200 mm Sezione acciaio a_s = 1'005 mm²/m Altezza della zona soggetta a x = 16.1 mm

pressoflessione

altezza statica d = 417.0 mmBraccio di leva delle forze interne z = 410.1 mmPercentuale armatura $\rho = 0.24 \%$

Resistenza ultima alla flessione $m_{Rd} = 247 \text{ kNm/m}$

 m_{Rd} = 247 kNm/m $\approx m_{xd}$ = 250 kNm/m

Armatura inferiore in direzione y

Geometria

Spessore soletta h = 450 mmRivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ Disposizione armatura 2° strato 0 = 16 mm

Calcolo della resistenza ultima alla flessione

Armatura di base

Diametro \emptyset = 14 mm Distanza s = 200 mm Sezione acciaio a_s = 770 mm²/m Altezza della zona soggetta a x = 12.3 mm

pressoflessione

altezza statica d = 402.0 mm Braccio di leva delle forze interne z = 396.8 mm Percentuale armatura ρ = 0.19 %

Resistenza ultima alla flessione $m_{Rd} = 183 \text{ kNm/m}$

 m_{Rd} = 183 kNm/m > m_{vd} = 175 kNm/m

Armatura superiore in direzione x

Geometria

Spessore soletta h = 450 mmRivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ Disposizione armatura 4° strato

Calcolo della resistenza ultima alla flessione

Armatura di base

Diametro \emptyset = 14 mm Distanza S = 200 mm Sezione acciaio a_s = 770 mm²/m Altezza della zona soggetta a x = 12.3 mm

pressoflessione

altezza statica d = 418.0 mm Braccio di leva delle forze interne z = 412.8 mm Percentuale armatura ρ = 0.18 %

Resistenza ultima alla flessione m_{Rd} = 191 kNm/m

 m_{Rd} = 191 kNm/m > m_{xd} = 175 kNm/m

Armatura superiore in direzione x tramite la parete intermedia

Il momento flettente tramite la parete intermedia viene integrato nel punto determinante per una larghezza di 1 m ed è pari a m_{xd} = 483 kNm/m.

Geometria

Spessore soletta h = 450 mmRivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ Disposizione armatura 4. strato

Calcolo della resistenza ultima alla flessione

Armatura di base

Diametro \emptyset = 16 mm Distanza s = 100 mm Sezione acciaio a_s = 2'011 mm²/m Altezza della zona soggetta a x = 32.3 mm

pressoflessione

altezza statica d = 417.0 mmBraccio di leva delle forze interne z = 403.3 mmPercentuale armatura $\rho = 0.48 \text{ }\%$

Resistenza ultima alla flessione $m_{Rd} = 487 \text{ kNm/m}$

 $m_{Rd} = 487 \text{ kNm/m} > m_{xd} = 483 \text{ kNm/m}$

Armatura superiore in direzione y

Geometria

Spessore soletta h = 450 mmRivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ Disposizione armatura 3° strato 0 = 14 mm

Calcolo della resistenza ultima alla flessione

Armatura di base

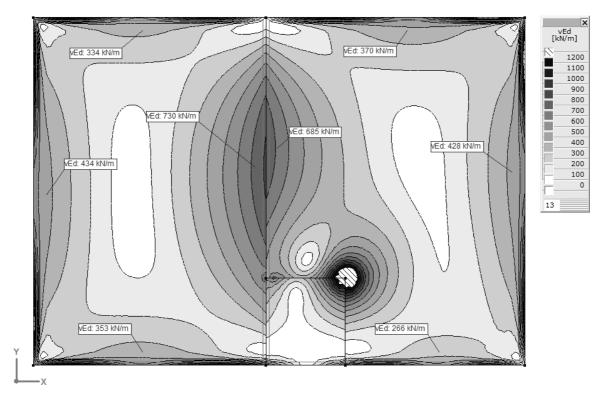
Diametro \emptyset = 14 mm Distanza S = 200 mm Sezione acciaio a_s = 770 mm²/m Altezza della zona soggetta a x = 12.3 mm

pressoflessione

altezza statica d = 404.0 mm Braccio di leva delle forze interne z = 398.8 mm Percentuale armatura ρ = 0.19 %

Resistenza ultima alla flessione m_{Rd} = 184 kNm/m

$$m_{Rd}$$
 = 184 kNm/m > m_{yd} = 170 kNm/m


La sicurezza strutturale soggetta a flessione nelle strisce di sostegno sull'angolo rientrante deve essere verificata con il carico massimo $q_{d,max}$ (vedi verifica del punzonamento capitolo 2.4.6).

2.4.5 Resistenza ultima a taglio

Forza di taglio determinante

Le forze di taglio determinanti si trovano alla distanza di $a = d_v/2 = 411/2 = 205$ mm dal bordo dell'appoggio (o 355 mm e quindi 305 mm dalle assi della parete) e sono pari a:

Lungo le pareti perimetrali: v_d = 434 kN/m lungo la parete intermedia: v_d = 730 kN/m

Resistenza al taglio senza armatura di taglio

Lo sfruttamento dell'armatura a flessione viene calcolato con $q_{d,max}$ (Φ = 2.0). Nelle pareti perimetrali i momenti flettenti della soletta m_d (Φ = 2.0) corrispondono alle resistenze ultime alla flessione delle pareti perimetrali. La resistenza al taglio della soletta senza armatura di taglio lungo le pareti perimetrali viene calcolata nel seguente modo:

Momento flettente della soletta $m_d(\Phi = 2.0) = 114 \text{ o } 121 \text{ kNm/m} = m_{Rd,parete}$

Resistenza ultima alla flessione della soletta $m_{Rd,soletta}$ = 184 o 191 kNm/m

Sfruttamento dell'armatura a flessione $m_d (\Phi = 2.0)/m_{Rd,soletta} = 121/184 = 0.66$

Geometria

altezza statica d = 411 mm

Resistenza al taglio senza armatura di taglio (SIA 262:2013 4.3.3.2)

Sfruttamento dell'armatura a flessione $m_d / m_{Rd} = 0.66$ Stato dell'armatura a flessione Elastico Dilatazione dell'armatura a flessione $\varepsilon_v = 0.0019$

Coefficiente grana max. $k_g = 1.00$ Coefficiente resistenza al taglio $k_d = 0.56$

Altezza statica effettiva $d_v = 411 \text{ mm}$ **Resistenza al taglio** $v_{Rd} = 389 \text{ kN/m}$

 $v_{Rd} = 389 \text{ kN/m} < v_d = 434 \text{ kN/m}$

Lungo le pareti perimetrali a sinistra e destra nella soletta è necessaria un'armatura di taglio. Lungo le pareti perimetrali superiori e inferiori la resistenza ultima a taglio può essere verificata senza armatura di taglio.

Nella parete intermedia vanno considerate le deformazioni plastiche dell'armatura a flessione, dato che $m_d(\Phi=2.0) > m_{Rd,soletta}$. La resistenza al taglio della soletta senza armatura di taglio è pari a:

Geometria

altezza statica d = 411 mm

Resistenza al taglio senza armatura di taglio (SIA 262:2013 4.3.3.2)

Stato dell'armatura a flessione Plastico
Dilatazione dell'armatura a flessione $\varepsilon_{v} = 0.0044$ Coefficiente grana max. $k_{g} = 1.00$ Coefficiente resistenza al taglio $k_{d} = 0.36$ Altezza statica effettiva $d_{v} = 411 \text{ mm}$ Resistenza al taglio $d_{v} = 249 \text{ kN/m}$

 $v_{Rd} = 249 \, \text{kN/m} < v_d = 730 \, \text{kN/m}$

La resistenza al taglio della soletta senza armatura di taglio non è sufficiente. Sulle pareti perimetrali a sinistra e destra nella soletta è necessaria un'armatura di taglio.

Resistenza al taglio con armatura di taglio

La resistenza al taglio della soletta con l'armatura di taglio viene calcolata con un'inclinazione del campo di pressione di α = 30°. La forza di taglio determinante per il dimensionamento dell'armatura di taglio si trova alla distanza di a = $z \cdot \cot \alpha$ = 402·cot (30°) = 696 mm dal bordo dell'appoggio ed è pari al massimo a v_d = 613 kN/m (parete intermedia).

Geometria

Braccio di leva delle forze interne z = 402 mm

Resistenza al taglio con armatura di taglio (SIA 262:2013 4.3.3.3)

Inclinazione del campo di pressione α = 30°

Armatura di taglio

 $\begin{array}{ll} \mbox{Diametro} & \mbox{\emptyset = 10 mm} \\ \mbox{Distanza in verticale dal bordo} & \mbox{s_{\perp} = 200 mm} \\ \mbox{Distanza parallela dal bordo} & \mbox{s_{\parallel} = 200 mm} \end{array}$

Inclinazione dell'armatura di taglio β = 0°

Percentuale dell'armatura di taglio $\rho_{\rm w}$ = 0.20 %

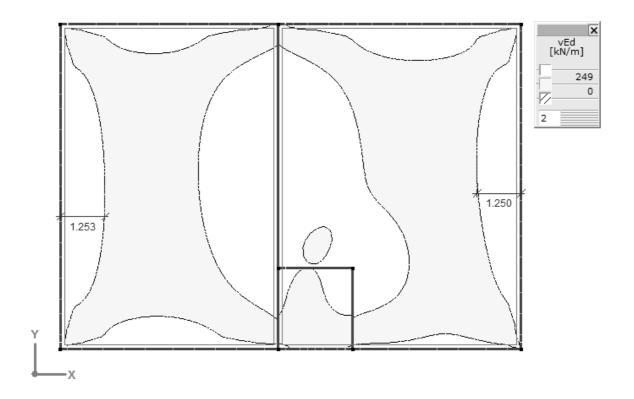
Resistenza dell'armatura di taglio $v_{Rd,s}$ = 820 kN/m

Coefficiente di riduzione della resistenza a $k_c = 0.55$

compressione del calcestruzzo

Resistenza del campo di compressione del $v_{Rd,c}$ = 4'213 kN/m

calcestruzzo


 $v_{Rd,s}$ = 820 kN/m > v_d = 613 kN/m $v_{Rd,c}$ = 4'213 kN/m > v_d = 613 kN/m

Area con armatura di taglio

Lungo la parete perimetrale sinistra e destra l'area con l'armatura di taglio viene selezionata in modo da ottenere una sufficiente resistenza al taglio della soletta senza armatura di taglio (non escludendo le deformazioni plastiche dell'armatura a flessione).

Larghezza con armatura di taglio

$$b_s = I - \frac{t_w}{2} = 1.25 - \frac{0.30}{2} = 1.10 \text{ m}$$

Nella parete intermedia viene preso in considerazione lo sfruttamento dell'armatura a flessione per il calcolo della resistenza al taglio senza armatura di taglio.

Ipotesi: la larghezza dell'area con staffa è pari a 1.30 m dall'asse della parete.

Momento flettente $m_d \approx 220 \text{ kNm/m}, \text{ con } q_{d,max} (\Phi = 2.0)$

Sfruttamento dell'armatura a flessione $m_d/m_{Rd} = 220 / 487 = 0.45$

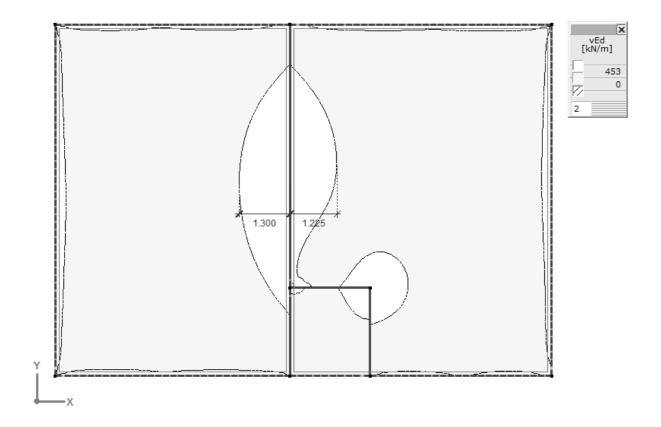
Forza di taglio massima $v_d = 451 \text{ kN/m}$

Resistenza al taglio senza armatura di taglio (SIA 262:2013 4.3.3.2)

Sfruttamento dell'armatura a flessione $m_d/m_{Rd} = 0.45$

Stato dell'armatura a flessione Elastico

Dilatazione dell'armatura a flessione $\varepsilon_{v} = 0.0013$


Coefficiente grana max. $k_g = 1.00$

Coefficiente resistenza al taglio $k_d = 0.65$

Altezza statica effettiva $d_v = 411 \text{ mm}$

Resistenza al taglio $v_{Rd} = 453 \text{ kN/m}$

 $v_{Rd} = 453 \text{ kN/m} > v_d = 451 \text{ kN/m}$

Larghezza con armatura di taglio

$$b_s = I - \frac{t_w}{2} = 1.30 - \frac{0.20}{2} = 1.20 \text{ m}$$

2.4.6 Sicurezza strutturale del punzonamento

Nell'angolo rientrante delle pareti della chiusa viene eseguita una verifica del punzonamento. In questo esempio viene scelto il coefficiente approssimativo k_e di 0.75. La verifica del punzonamento viene effettuata con il livello di approssimazione 3 secondo la norma SIA 262.

Selezione dell'armatura a flessione e calcolo delle resistenze ultime alla flessione

Disposizione armatura

Armatura di base

Armatura in direzione x 4° strato Armatura in direzione y 3° strato

Armatura superiore in direzione x

ø = 14 mm

s = 200 mm

Strati aggiuntivi $\phi = 20 \text{ mm}$

s = 200 mm

 $A_{s.esist} = 2'340 \text{ mm}^2/\text{m}$

 $d_x = 415 \text{ mm}$

 $m_{Rd} = 560.4 \text{ kNm/m}$

Armatura superiore in direzione y

Armatura di base ø = 14 mm

s = 200 mm

Strati aggiuntivi $\phi = 22 \text{ mm}$

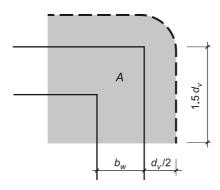
s = 200 mm

 $A_{s,esist} = 2'340 \text{ mm}^2/\text{m}$

 $d_v = 395 \text{ mm}$

 $m_{Rd} = 532.3 \text{ kNm/m}$

L'altezza statica effettiva d_v è pari a


$$d_v = \frac{d_x + d_y}{2} = \frac{415 + 395}{2} = 405 \text{ mm}$$

Valore di dimensionamento del carico del punzonamento

Valore di dimensionamento del carico del punzonamento con sollecitazione $q_{d,max}$ V_d = 1'600 kN

Resistenza a punzonamento senza armatura a punzonamento

Superficie interna della sezione verificata

$$A = (1.5 \cdot d_{v})^{2} + 2 \cdot 1.5 \cdot d_{v} \cdot \frac{d_{v}}{2} + \pi \cdot \left(\frac{d_{v}}{2}\right)^{2} \cdot \frac{1}{4}$$

$$A = (1.5 \cdot 405)^2 + 2 \cdot 1.5 \cdot 405 \cdot \frac{405}{2} + \pi \cdot \left(\frac{405}{2}\right)^2 \cdot \frac{1}{4} = 647'300 \text{ mm}^2$$

Diametro della superficie interna della sezione verificata, convertita in una circonferenza di uguale superficie

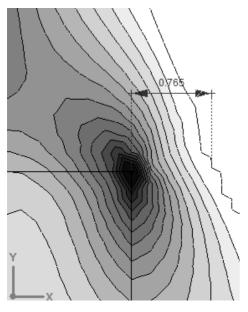
$$b = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{647'300 \cdot 4}{\pi}} = 908 \text{ mm}$$

Eccentricità tra la forza applicata risultante e il baricentro della sezione verificata.

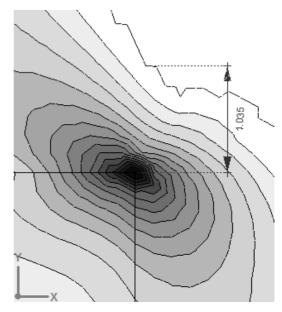
$$e_u = \frac{1 - k_e}{k_e} \cdot b$$

$$e_u = \frac{1 - 0.75}{0.75} \cdot 908 = 303 \text{ mm}$$

Perimetro della sezione verificata u


$$u = 2 \cdot 1.5 \cdot d_v + 2 \cdot \pi \cdot \frac{d_v}{2} \cdot \frac{1}{4}$$

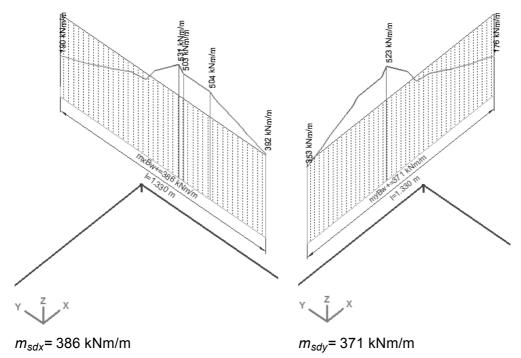
$$u = 2 \cdot 1.5 \cdot 405 + 2 \cdot \pi \cdot \frac{405}{2} \cdot \frac{1}{4} = 1'533 \text{ mm}$$


Perimetro ridotto della sezione verificata u_{red}

$$u_{red} = u \cdot k_e = 1'533 \cdot 0.75 = 1'150 \text{ mm}$$

Distanza r_s tra il punto centrale dell'appoggio e il punto di momento zero

 $r_{sx} = 765 \text{ mm}$



 r_{sv} = 1'035 mm

Larghezza rappresentativa b_s delle strisce di sostegno

$$b_s = 1.5 \cdot \sqrt{r_{sx} \cdot r_{sy}} = 1.5 \cdot \sqrt{765 \cdot 1'035} = 1.33 \text{ m}$$

Momenti flettenti m_{sd} nelle strisce di sostegno in seguito a $q_{d,max}$ sul bordo delle pareti della chiusa

Verifica della sicurezza strutturale soggetta a flessione nelle strisce di sostegno

$$m_{Rdx}$$
 = 560.4 kNm/m > m_{sdx} = 386 kNm/m

$$m_{Rdy} = 532.3 \text{ kNm/m} > m_{sdy} = 371 \text{ kNm/m}$$

Rotazioni delle solette ψ

$$\psi_{x} = 1.2 \cdot \frac{r_{sx}}{d_{x}} \cdot \frac{f_{sd}}{E_{s}} \cdot \left(\frac{m_{sdx}}{m_{Rdx}}\right)^{3/2} = 1.2 \cdot \frac{0.677}{0.415} \cdot \frac{600}{205'000} \cdot \left(\frac{386}{560.4}\right)^{3/2} = 0.0037$$

$$\psi_y = 1.2 \cdot \frac{r_{sy}}{d_y} \cdot \frac{f_{sd}}{E_s} \cdot \left(\frac{m_{sdy}}{m_{Rdx}}\right)^{3/2} = 1.2 \cdot \frac{0.846}{0.395} \cdot \frac{600}{205'000} \cdot \left(\frac{371}{532.3}\right)^{3/2} = 0.0054$$

Rotazione della soletta determinante $\psi = 0.0054$

Coefficiente k_r per calcolare la dimensione del componente, della rotazione della soletta e della grana massima

$$k_r = \frac{1}{0.45 + 0.18 \cdot \psi \cdot d \cdot k_g}$$

$$k_r = \frac{1}{0.45 + 0.18 \cdot 0.0054 \cdot 405 \cdot \frac{48}{16 + 32}} = 1.190$$

Resistenza a punzonamento $V_{Rd,c}$ senza armatura a punzonamento

$$V_{Rd,c} = k_r \cdot \tau_{cd} \cdot d_v \cdot u_{red}$$

$$V_{Rd,c} = 1.190 \cdot 1.7 \cdot 405 \cdot 1'150 \cdot 10^{-3} = 942 \text{ kN}$$

$$V_{Rd,c}$$
 = 942 kN < V_d = 1'600 kN

La verifica del punzonamento non può essere eseguita senza armatura a punzonamento.

Resistenza a punzonamento con armatura a punzonamento

La resistenza a punzonamento con armatura a punzonamento viene limitata dalla resistenza alla rottura della prima diagonale della pressione del calcestruzzo adiacente alla superficie sostenuta.

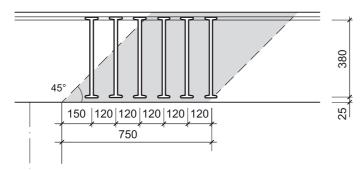
$$V_{Rd,c,max} = 2 \cdot k_r \cdot \tau_{cd} \cdot d_v \cdot u_{red}$$

$$V_{Rd,c,max} = 2 \cdot 1.190 \cdot 1.7 \cdot 405 \cdot 1'150 \cdot 10^{-3} = 1'884 \text{ kN}$$

Valore di dimensionamento della forza di taglio $V_{d,s}$ dell'armatura a punzonamento

$$V_{d,s} = V_d - V_{Rd,c} \ge \frac{V_d}{2}$$

$$V_{d,s}$$
 = 1'600 – 942 = 658 kN < $\frac{1'600}{2}$ = 800 kN


$$V_{d.s} = 800 \text{ kN}$$

Vengono selezionati 5 listelli di punzonamento con elementi di armatura disposti in senso radiale.

Diametro: $\phi_{sw} = 22 \text{ mm}$

Distanza radiale: $s_1 = 120 \text{ mm} < 200 + \frac{d}{6} = 269 \text{ mm}$

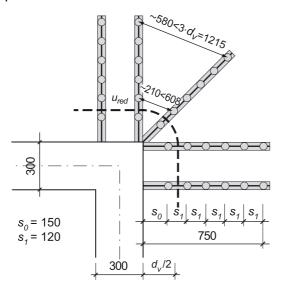
Distanza dal bordo $s_0 = 150 \text{ mm} < s_{1,max} = 269 \text{ mm}$

Numero di aste nell'intervallo tra $0.35d_v$ e d_v dalla superficie sostenuta $n = 3 \cdot 5 = 15$

Valore di dimensionamento della tensione σ_{sd} nell'armatura a punzonamento

$$\sigma_{sd} = \frac{E_s \cdot \psi}{6} \cdot \left(1 + \frac{f_{bd}}{f_{sd}} \cdot \frac{d}{\phi_{sw}} \right)$$

$$\sigma_{sd} = \frac{205'000 \cdot 0.0054}{6} \cdot \left(1 + \frac{4.0}{600} \cdot \frac{405}{22} \right) = 205 \,\text{N/mm}^2$$

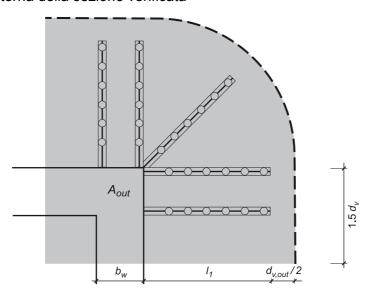

Resistenza dell'armatura a punzonamento $V_{Rd,s}$

$$V_{Rd,s} = \sum A_{sw} \cdot k_e \cdot \sigma_{sd} \cdot \sin \beta$$

$$V_{Rd,s} = 15 \cdot \pi \cdot \frac{22^2}{4} \cdot 0.75 \cdot 205 \cdot \sin(90^\circ) \cdot 10^{-3} = 878 \text{ kN}$$

$$V_{Rd,s}$$
 = 878 kN > $V_{d,s}$ = 800 kN

Al posto delle barre di armatura con teste saldate possono essere collocate anche staffe. Il dimensionamento delle staffe viene eseguito in maniera analoga, tuttavia non è mostrato in questo esempio.


Resistenza a punzonamento esterna all'area con armatura a punzonamento

La lunghezza necessaria dei listelli di punzonamento deve essere selezionata in modo da ottenere una sufficiente resistenza a punzonamento del calcestruzzo $V_{Rd,c,out}$ esterna all'area con armatura a punzonamento.

selezionato: I_1 = 150 + 5 · 120 = 750 mm

Altezza statica effettiva $d_{v,out}$ esterna all'area con armatura a punzonamento $d_{v,out} = d_v - c_v = 405 - 25 = 380 \text{ mm}$

Superficie interna della sezione verificata

$$A_{out} = (1.5 \cdot d_v)^2 + 2 \cdot 1.5 \cdot d_v \cdot \left(I_1 + \frac{d_{v,out}}{2}\right) + \pi \cdot \left(I_1 + \frac{d_{v,out}}{2}\right)^2 \cdot \frac{1}{4}$$

$$A_{out} = (1.5 \cdot 405)^2 + 2 \cdot 1.5 \cdot 405 \cdot \left(750 + \frac{380}{2}\right) + \pi \cdot \left(750 + \frac{380}{2}\right)^2 \cdot \frac{1}{4} = 2'205'137 \text{ mm}^2$$

Diametro della superficie interna della sezione verificata, convertita in una circonferenza di uguale superficie

$$b_{out} = \sqrt{\frac{A_{out} \cdot 4}{\pi}} = \sqrt{\frac{2'205'137 \cdot 4}{\pi}} = 1'676 \text{ mm}$$

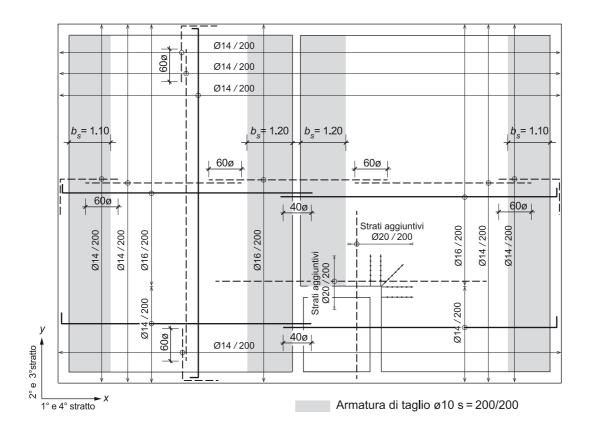
Coefficiente per la riduzione del perimetro della sezione verificata

$$k_{e,out} = \frac{1}{1 + \frac{e_u}{b_{out}}} = \frac{1}{1 + \frac{303}{1'676}} = 0.85$$

Perimetro della sezione verificata u_{out} esterna all'area con armatura a punzonamento

$$u_{out} = 2 \cdot 1.5 \cdot d_{v,out} + 2 \cdot \pi \cdot \left(I_1 + \frac{d_{v,out}}{2}\right) \cdot \frac{1}{4}$$

$$u_{out} = 2 \cdot 1.5 \cdot 380 + 2 \cdot \pi \cdot \left(750 + \frac{380}{2}\right) \cdot \frac{1}{4} = 2'616 \text{ mm}$$


Perimetro ridotto della sezione verificata

$$u_{out,red} = k_{e,out} \cdot u_{out} = 0.85 \cdot 2'616 = 2'216 \text{ mm}$$

Resistenza a punzonamento $V_{Rd,c,out}$ esterna all'area con armatura a punzonamento

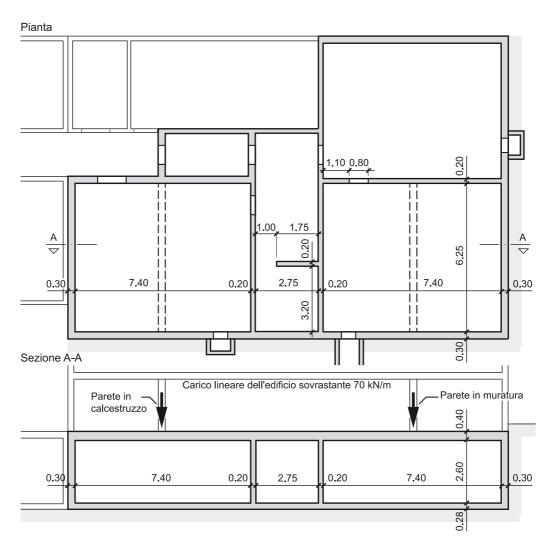
$$V_{Rd,c,out} = k_r \cdot \tau_{cd} \cdot d_{v,out} \cdot u_{out,red} = 1.190 \cdot 1.7 \cdot 380 \cdot 2'216 \cdot 10^{-3} = 1'704 \text{ kN}$$

 $V_{Rd,c,out} = 1'704 \text{ kN} > V_d = 1'600 \text{ kN}$

2.4.7 Disegno dell'armatura

3 Costruzione di protezione di un'abitazione

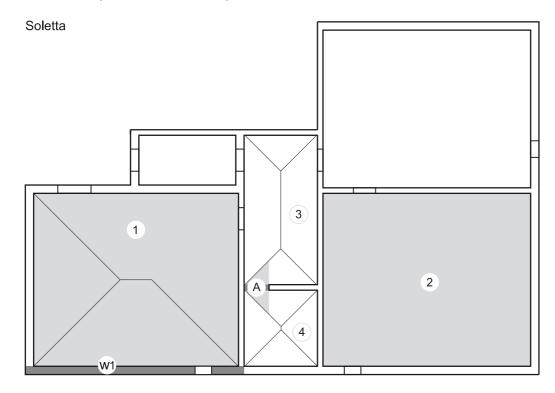
3.1 Scopo dell'esempio

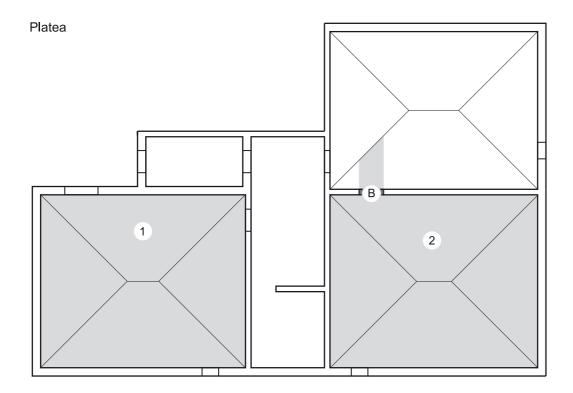

L'esempio di una costruzione di protezione in un'abitazione indica la procedura utilizzata per i componenti selezionati.

La parete in calcestruzzo dell'edificio sovrastante è autoportante, genera una tensione da parete a parete ed è separata dalla soletta del rifugio. Essa non grava sulla soletta del rifugio. La parete in muratura invece è appoggiata direttamente sulla soletta del rifugio.

Nell'esempio non sono riportate le verifiche necessarie per l'eventuale utilizzo in tempi di pace, secondo la norma SIA 260 e seguenti.

3.2 Basi


3.2.1 Dimensioni



3.2.2 Componenti dimensionati

In questo esempio verranno dimensionati i seguenti componenti:

- Campi della soletta 1 (metodo cinematico)
- Campi della soletta 2 (metodo statico)
- Appoggio sostitutivo A nella soletta (metodo cinematico)
- Campi delle platee 1 e 2 (metodo cinematico)
- Appoggio sostitutivo B nella platea (metodo cinematico)
- Parete W1 (metodo cinematico)

3.2.3 Materiali

Acciaio d'armatura B500B

Valore di calcolo del limite di snervamento $f_{sd} = 600 \text{ N/mm}^2$ Modulo di elasticità $E_{sd} = 205'000 \text{ N/mm}^2$

Calcestruzzo C30/37

Valore di calcolo della resistenza alla compressione $f_{cd} = 44 \text{ N/mm}^2$ Valore di calcolo della tensione tangenziale ultima $\tau_{cd} = 1.7 \text{ N/mm}^2$ Modulo di elasticità $E_{sm} = 35'000 \text{ N/mm}^2$ Grana max. degli inerti $D_{max} = 32 \text{ mm}$

Rivestimento armatura: (valore minimo / valore di calcolo)

verso terra 35 / 40 mm nell'edificio 20 / 25 mm

3.2.4 Terreno di fondazione

Terreno di fondazione tipo la

3.3 Campo della soletta 1

3.3.1 Valore di dimensionamento delle azioni

$$q_d = g_k + \Phi \cdot q_k + \psi_{21} \cdot q_{k1} \qquad \qquad \text{con } g_k = g_{k,EG} + g_{k,AL}$$

 q_d valore di dimensionamento delle azioni sulla soletta

 $g_{_{k\,FG}}$ valore caratteristico del peso proprio della soletta

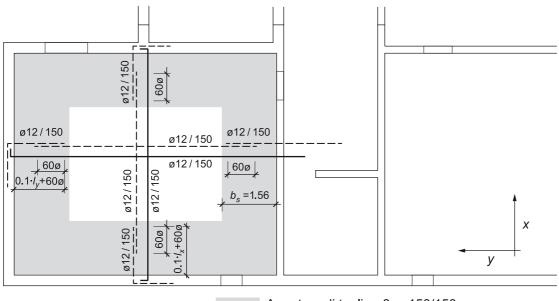
 $g_{k,AL}$ valore caratteristico del carico strutturale (50 mm di strato sulla soletta)

 Φ fattore di carico dinamico

 q_k valore caratteristico dell'onda d'urto dell'aria

 ψ_{21} coefficiente di riduzione

 q_{k1} valore caratteristico del carico utile nell'edificio


$$g_{k,EG} = 0.40 \text{ m} \cdot 25 \text{ kN/m}^3 = 10 \text{ kN/m}^2$$

 $g_{k,AL} = 0.05 \text{ m} \cdot 20 \text{ kN/m}^3 = 1.0 \text{ kN/m}^2$

$$\Phi$$
 = 1.2 (ITC 2017, tabella 4)
 q_k = 100 kN/m² (ITC 2017, capitolo 6.3)

$$\psi_{21}$$
= 0.6 Categoria C (SIA 260, tabella 1)
 q_{k1} = 5.0 kN/m² Categoria C (SIA 261, tabella 8)

$$q_d = 10 + 1.0 + 1.2 \cdot 100 + 0.6 \cdot 5.0 = 134 \text{ kN/m}^2$$

3.3.2 Armatura

Armatura di taglio ø8 s=150/150

3.3.3 Resistenze ultime alla flessione

Indice	Posizione	Armatura	a _{s,ef} [mm²/m]	d [mm]	ρ _{ef} [%]	m _{Rd} [kNm/m]	Osservazioni
x+ y+	Campo Direzione x Direzione y	ø12/150 ø12/150	754 754	369 357	0.20 0.21	164 159	
x1-	Parete perimetrale inferiore	ø12/150	754	254	0.30	113	Parete determinante
x2-	Parete perimetrale superiore	ø12/150	754	269	0.28	119	Parete determinante
y1-	Parete perimetrale sinistra	ø12/150	754	254	0.30	113	Parete determinante
y2-	Parete intermedia destra	ø12/150	754	357	0.21	159	

3.3.4 Sicurezza strutturale soggetta a flessione

Carico limite a flessione

$$q_{Rd} = \left[\frac{12 \cdot (m_{xRd1}^{-} + 2 \cdot m_{xRd}^{+} + m_{xRd2}^{-})}{3 \cdot I_{x}^{2} \cdot \frac{I_{x}^{3}}{I_{y}}} + \frac{12 \cdot (m_{yRd1}^{-} + 2 \cdot m_{yRd}^{+} + m_{yRd2}^{-})}{3 \cdot I_{x} \cdot I_{y} \cdot I_{x}^{2}} \right]$$

$$q_{Rd} = \left[\frac{12 \cdot (113 + 2 \cdot 164 + 119)}{3 \cdot 6.25^2 - \frac{6.25^3}{7.4}} + \frac{12 \cdot (113 + 2 \cdot 159 + 159)}{3 \cdot 6.25 \cdot 7.4 - 6.25^2} \right] = 150.8 \text{ kN/m}^2$$

$$q_{Rd}$$
 = 150.8 kN/m² > q_d = 134 kN/m²

3.3.5 Resistenza ultima a taglio

Verifica della resistenza ultima a taglio con il carico limite a flessione della soletta, dato che

$$\begin{split} q_{Rd} &\leq q_{d,max} \text{ con } \Phi = 2.0 \\ q_{d,max} &= g_k + \Phi \cdot q_k + \psi_{21} \cdot q_{k1} \\ q_{d,max} &= 10 + 1.0 + 2.0 \cdot 100 + 0.6 \cdot 5.0 = 214 \, \text{kN/m}^2 \\ q_{Rd} &= 150.8 \, \, \text{kN/m}^2 \leq q_{d,max} = 214 \, \text{kN/m}^2 \end{split}$$

Altezza statica effettiva per il calcolo delle resistenze al taglio:

$$d_v = \frac{369 + 357}{2} = 363 \text{ mm}$$

Forza di taglio sul lato lungo (y):

$$v_{yd} = q_{Rd} \cdot \frac{\left(2 \cdot I_y - I_{x^-} d_v\right) \cdot \left(I_x - d_v\right)}{4 \cdot \left(I_v - d_v\right)} = 150.8 \cdot \frac{\left(2 \cdot 7.4 - 6.25 - 0.363\right) \cdot \left(6.25 - 0.363\right)}{4 \cdot \left(7.4 - 0.363\right)} = 258.3 \, \text{kN/m}$$

Forza di taglio sul lato corto (x):

$$v_{xd} = q_{Rd} \cdot \frac{(I_x - d_v) \cdot (I_x - d_v)}{4 \cdot (I_x - d_v)} = 150.8 \cdot \frac{(6.25 - 0.363) \cdot (6.25 - 0.363)}{4 \cdot (6.25 - 0.363)} = 222 \, \text{kN/m}$$

Resistenza al taglio con armatura di taglio

La resistenza al taglio con armatura di taglio viene calcolata con un braccio di leva delle forze interne di $z = 0.95 \cdot d = 0.95 \cdot 363 = 345$ mm. Si presuppone l'inclinazione del campo di pressione con $\alpha = 30^{\circ}$.

Geometria

Braccio di leva delle forze interne z = 345 mm

Resistenza al taglio senza armatura di taglio (SIA 262:2013 4.3.3.3)

Inclinazione del campo di pressione α = 30° Armatura di taglio Diametro ø = 8 mmDistanza in verticale dal bordo $s_1 = 150 \text{ mm}$ Distanza parallela dal bordo $s_{||} = 150 \text{ mm}$ Inclinazione dell'armatura di taglio $\beta = 0^{\circ}$ Percentuale dell'armatura di taglio $\rho_{\rm w}$ = 0.22 % Resistenza dell'armatura di taglio $v_{Rd.s} = 801 \text{ kN/m}$ $k_c = 0.55$ Coefficiente di riduzione della resistenza a

compressione del calcestruzzo

Resistenza del campo di compressione del calcestruzzo

 $v_{Rd,c}$ = 3'615 kN/m

$$v_{Rd,s}$$
 = 801 kN/m > v_{vd} = 258.3 kN/m

$$v_{Rdc}$$
 = 3'615 kN/m > v_{vd} = 258.3 kN/m

Sui bordi lunghi della soletta viene posizionata un'armatura di taglio.

Larghezza con armatura di taglio

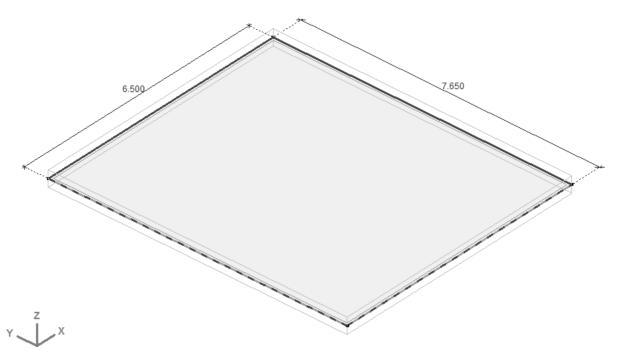
$$b_s = \max (2 \cdot d_v, I_x/4) = 6.25/4 = 1.56 \text{ m}$$

3.4 Campo della soletta 2

Il campo della soletta 2 deve essere dimensionato in base al carico lineare sulla soletta con il metodo statico.

3.4.1 Valore di dimensionamento delle azioni

Il carico della soletta per la sollecitazione a flessione corrisponde al valore indicato per il campo della soletta 1.


$$q_d = 134 \, \text{kN/m}^2$$

Il carico della soletta per la sollecitazione a taglio è pari a:

$$q_{d,max}$$
 = 10 + 1.0 + 2.0 · 100 + 0.6 · 5.0 = 214 kN/m²

Oltre al carico della superficie viene applicato il carico lineare della parete in muratura $f_d = 70 \, \text{kN/m}$

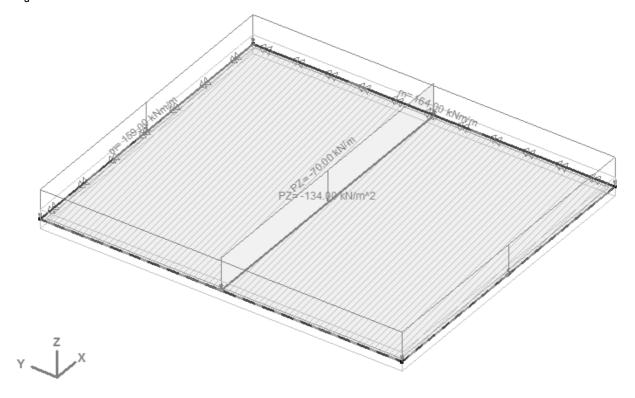
3.4.2 Modello statico

La soletta viene fissata in modo elastico lungo le pareti perimetrali. Il fissaggio presenta un momento limite che corrisponde alla resistenza ultima alla flessione della parete adiacente.

 $m_{Rd,fissaggio}$ = 151 kNm/m con armatura ø14/150

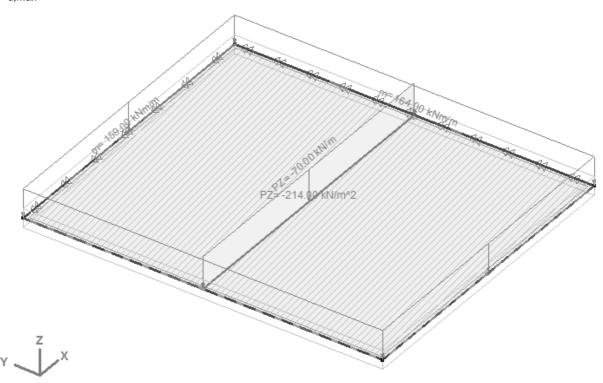
Nelle pareti interne la soletta viene posizionata su appoggi lineari snodati. Lungo le pareti interne sui bordi della soletta vengono applicati momenti flettenti, che corrispondono alle resistenze ultime alla flessione dei campi delle solette adiacenti.

 m_{Rd} = 164 o 159 kNm/m con armatura ø12/150 (Ipotesi)

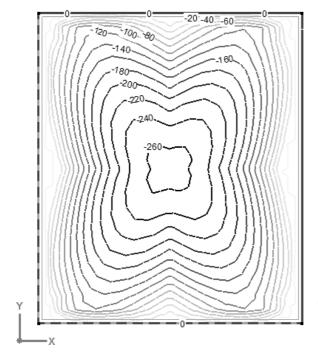

Le azioni verranno calcolate con un programma FE.

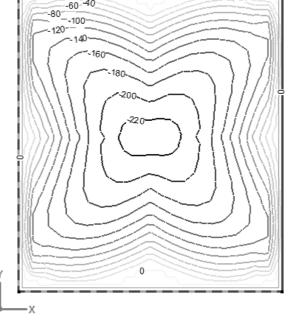
Convenzione utilizzata per la traccia: i momenti flettenti negativi generano sollecitazioni di trazione sul lato inferiore della soletta.

3.4.3 Tipi di carico


Carico per flessione

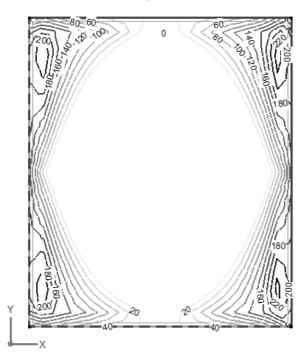
$$q_d = 134 \, \text{kN/m}^2$$


Carico per taglio

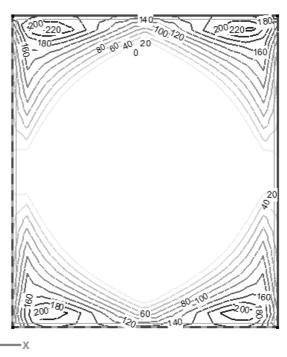

$$q_{d,max}$$
= 214 kN/m²

3.4.4 Sicurezza strutturale soggetta a flessione

Momenti flettenti degli strati di armatura inferiori

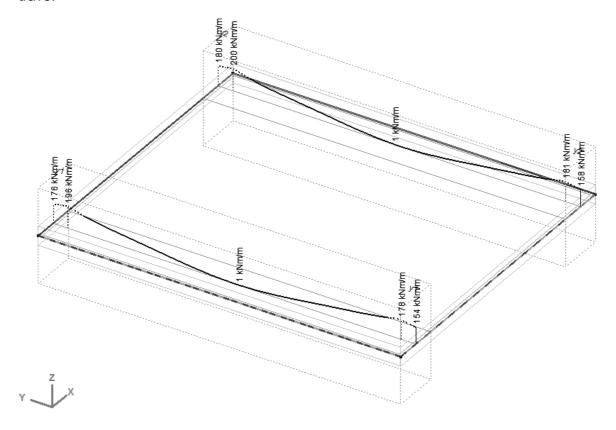

-60-40

-20

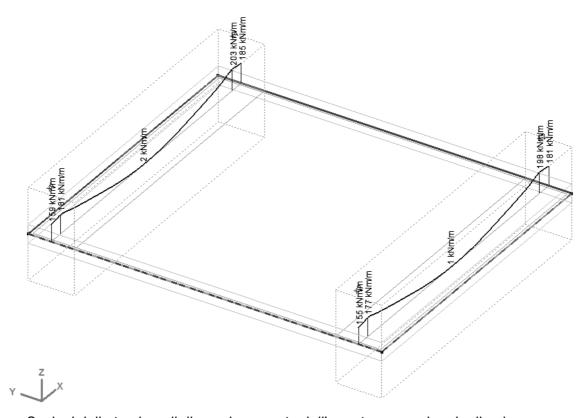

Momenti flettenti dell'armatura inferiore in direzione x

Momenti flettenti dell'armatura inferiore in direzione y

Momenti flettenti degli strati di armatura superiori



Momenti flettenti dell'armatura superiore in direzione x



Momenti flettenti dell'armatura superiore in direzione y

Per il dimensionamento dell'armatura a flessione superiore vengono introdotte sezioni delle travi di larghezza pari a $b=1\,\mathrm{m}$. I momenti flettenti verranno integrati nella larghezza della trave.

Sezioni delle travi per il dimensionamento dell'armatura superiore in direzione y

Sezioni delle travi per il dimensionamento dell'armatura superiore in direzione x

Resistenze ultime alla flessione

Armatura inferiore in direzione x

Geometria

Spessore soletta h = 400 mmRivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ Disposizione armatura 1° strato

Calcolo della resistenza ultima alla flessione

Armatura di base

Diametro \emptyset = 16 mm Distanza S = 150 mm Sezione acciaio a_s = 1'340 mm²/m Altezza della zona soggetta a x = 21.5 mm

pressoflessione

altezza statica d=367.0 mmBraccio di leva delle forze interne z=357.9 mmPercentuale armatura $\rho=0.37 \text{ }\%$

Resistenza ultima alla flessione m_{Rd} = 288 kNm/m

 $m_{Rd} = 288 \, \text{kNm/m} > m_{xd} = 268 \, \text{kNm/m}$

Armatura inferiore in direzione y

Geometria

Spessore soletta h = 400 mmRivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ Disposizione armatura 2° strato 0 = 16 mm

Calcolo della resistenza ultima alla flessione

Armatura di base

Diametro \emptyset = 16 mm Distanza S = 150 mm Sezione acciaio a_s = 1'340 mm²/m Altezza della zona soggetta a x = 21.5 mm

pressoflessione

altezza statica d = 351.0 mm Braccio di leva delle forze interne z = 341.9 mm Percentuale armatura ρ = 0.38 %

Resistenza ultima alla flessione $m_{Rd} = 275 \text{ kNm/m}$

 $m_{Rd} = 275 \text{ kNm/m} > m_{yd} = 235 \text{ kNm/m}$

Armatura superiore in direzione x

Geometria

Spessore soletta h = 400 mmRivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ Disposizione armatura 4° strato

Calcolo della resistenza ultima alla flessione

Armatura di base

Diametro \emptyset = 14 mm Distanza S = 150 mm Sezione acciaio a_s = 1'026 mm²/m Altezza della zona soggetta x = 16.5 mm

a pressoflessione

altezza statica d = 368.0 mm Braccio di leva delle forze interne z = 361.0 mm Percentuale armatura ρ = 0.28 %

Resistenza ultima alla flessione m_{Rd} = 222 kNm/m

 $m_{Rd} = 222 \text{ kNm/m} > m_{xd} = 203 \text{ kNm/m}$

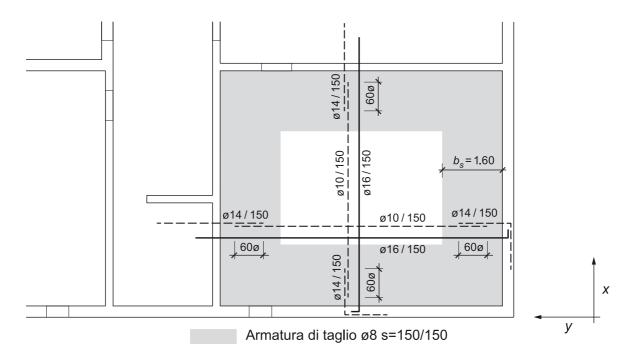
Armatura superiore in direzione y

Geometria

Spessore soletta h = 400 mmRivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ Disposizione armatura 3° strato 9 = 14 mm

Calcolo della resistenza ultima alla flessione

Armatura di base

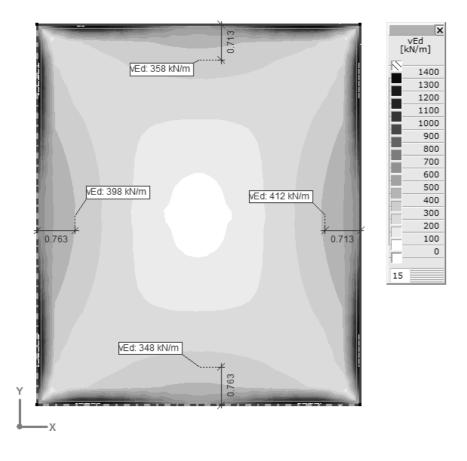

Diametro \emptyset = 14 mm Distanza S = 150 mm Sezione acciaio $a_s = 1'026$ mm²/m

Altezza della zona soggetta a pressoflessione x = 16.5 mm altezza statica d = 354.0 mm Braccio di leva delle forze interne z = 347.0 mm Percentuale armatura $\rho = 0.29 \%$

Resistenza ultima alla flessione m_{Rd} = 214 kNm/m

 m_{Rd} = 214 kNm/m > m_{vd} = 200 kNm/m

3.4.5 Armatura



3.4.6 Resistenza ultima a taglio

Forza di taglio determinante

Si presume l'inclinazione del campo di pressione con α = 30°.

La forza di taglio determinante per il dimensionamento dell'armatura di taglio si trova alla distanza di $a = z \cdot \cot(\alpha) = 354 \cdot \cot(30^\circ) = 613$ mm dal bordo dell'appoggio (oppure 763 mm e quindi 713 mm dalle assi della parete) e al massimo misura $v_d = 412$ kN/m.

Resistenza al taglio con armatura di taglio

Geometria

Braccio di leva delle forze interne z = 354 mm

Resistenza al taglio con armatura di taglio (SIA 262:2013 4.3.3.3)

Inclinazione del campo di pressione α = 30°

Armatura di taglio

Diametro $\emptyset = 8 \text{ mm}$ Distanza in verticale dal bordo $\$_{\perp} = 150 \text{ mm}$ Distanza parallela dal bordo $\$_{||} = 150 \text{ mm}$ Inclinazione dell'armatura di taglio $\beta = 0^{\circ}$

Inclinazione dell'armatura di taglio β = 0° Percentuale dell'armatura di taglio ρ_w = 0.22 % Resistenza dell'armatura di taglio $\nu_{Rd,s}$ = 822 kN/m

Coefficiente di riduzione della resistenza $k_c = 0.55$

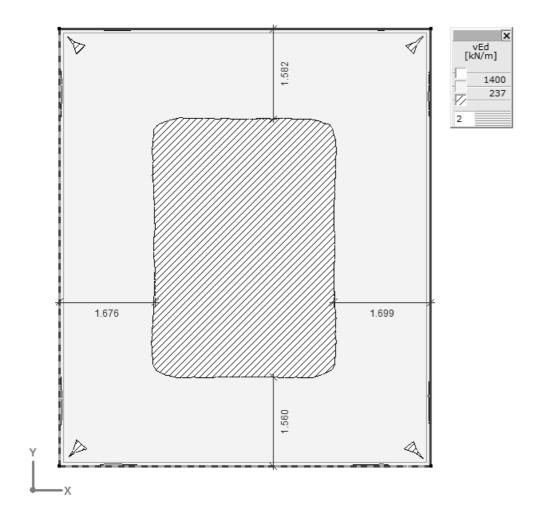
a compressione del calcestruzzo

Posistonza del campo di

Resistenza del campo di $v_{Rd,c}$ = 3'710 kN/m compressione del calcestruzzo

 $v_{Rd,s}$ = 822 kN/m > v_d = 412 kN/m $v_{Rd,c}$ = 3'710 kN/m > v_d = 412 kN/m

Area con armatura di taglio


Si presume che non si possano escludere deformazioni plastiche dell'armatura a flessione. La resistenza al taglio senza armatura di taglio viene quindi calcolata nel seguente modo:

Geometria

altezza statica d = 359 mm

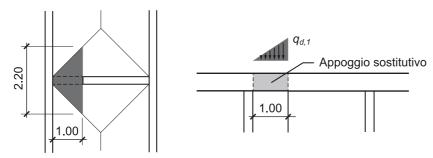
Resistenza al taglio senza armatura di taglio (SIA 262:2013 4.3.3.2)

Stato dell'armatura a flessione Plastico
Dilatazione dell'armatura a flessione $\varepsilon_{v} = 0.0044$ Coefficiente grana max. $k_{g} = 1.00$ Coefficiente resistenza al taglio $k_{d} = 0.39$ Altezza statica effettiva $d_{v} = 359$ mm
Resistenza al taglio $v_{Rd} = 237$ kN/m

Nell'area tratteggiata può essere effettuata la verifica della resistenza ultima a taglio senza armatura di taglio ($v_d < v_{Rd}$ = 237 kN/m). Nelle aree grigie lungo i bordi della soletta è necessaria un'armatura di taglio.

Larghezza con armatura di taglio

$$b_s = I - \frac{t_w}{2} = 1.70 - \frac{0.2}{2} = 1.60 \text{ m}$$


3.5 Appoggio sostitutivo A

3.5.1 Valore di dimensionamento delle azioni

L'appoggio sostitutivo A viene utilizzato come tale per i campi delle solette 3 e 4. In base alle portate ridotte dei campi delle solette 3 e 4 si presume che il relativo carico limite a flessione sia maggiore del carico massimo con Φ = 2.0. L'appoggio sostitutivo viene dimensionato con le reazioni di appoggio delle solette, calcolato con Φ = 2.0.

$$\begin{aligned} q_{d,max} &= g_k + \Phi \cdot q_k + \psi_{21} \cdot q_{k1} \\ q_{d,max} &= 10 + 1.0 + 2.0 \cdot 100 + 0.6 \cdot 5.0 = 214 \, \text{kN/m}^2 \end{aligned}$$

L'appoggio sostitutivo viene dimensionato come fosse una trave integrata nello spessore.

$$q_{d,1} = q_{d,max} \cdot b = 214 \cdot 2.2 = 471 \text{ kN/m}$$

Il momento della trave semplice è pari a:

$$M_d = \frac{1}{9 \cdot \sqrt{3}} \cdot q_{d,1} \cdot I^2 = \frac{1}{9 \cdot \sqrt{3}} \cdot 471 \cdot 1^2 = 30.2 \text{ kNm}$$

3.5.2 Sicurezza strutturale soggetta a flessione

Resistenza ultima alla flessione

Geometria

Altezza componente h = 400 mmLarghezza componente b = 200 mmRivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ Disposizione armatura 2° strato 0 strato 0 = 0 mm

Calcolo della resistenza ultima alla flessione

Armatura di base

Diametro $\phi = 12 \text{ mm}$ Numero n = 2strati a = 1 $A_s = 226 \text{ mm}^2$ Sezione acciaio Altezza della zona soggetta x = 18.1 mma pressoflessione altezza statica d = 359.0 mmBraccio di leva delle forze interne z = 351.3 mmPercentuale armatura ρ = 0.32 % Resistenza ultima alla flessione M_{Rd} = 48 kNm

 M_{Rd} = 48 kNm > M_d = 30.2 kNm

3.5.3 Resistenza ultima a taglio

Forza di taglio determinante

Forza di taglio nella distanza a dal bordo dell'appoggio:

 $a = z \cdot \cot \alpha$

$$a = 357 \cdot \cot (45^{\circ}) = 357 \text{ mm}$$

$$V_d = \frac{1}{3} \cdot q_{d,1} \cdot I - \frac{(2 \cdot I - a) \cdot a}{2 \cdot I} \cdot q_{1,d}$$

$$V_d = \frac{1}{3} \cdot 471 \cdot 1 - \frac{(2 \cdot 1 - 0.357) \cdot 0.357}{2 \cdot 1} \cdot 471 = 19 \text{ kN}$$

Resistenza al taglio con armatura di taglio

Geometria

Braccio di leva delle forze interne z = 351 mmLarghezza componente $b_w = 200 \text{ mm}$

Resistenza al taglio senza armatura di taglio (SIA 262:2013 4.3.3.3)

 α = 45°

 $V_{Rd,c} = 849 \text{ kN}$

Inclinazione del campo di pressione

Armatura di taglio

Diametro ø = 8 mmDistanza s = 150 mm

Numero sezioni Inclinazione dell'armatura di taglio $\beta = 0^{\circ}$ Percentuale dell'armatura di taglio ρ_{w} = 0.34 %

Resistenza dell'armatura di taglio $V_{Rd.s} = 141 \text{ kN}$ Coefficiente di riduzione della resistenza $k_c = 0.55$

a compressione del calcestruzzo Resistenza del campo di compressione

del calcestruzzo

$$V_{Rd,s}$$
= 141 kN > V_d = 19 kN

$$V_{Rd,c}$$
= 849 kN > V_d = 19 kN

3.6 Campi delle platee 1 e 2

3.6.1 Valore di dimensionamento delle azioni

Valore di dimensionamento delle azioni sulla platea

$$q_{0d}, q_{sd} = \delta \left(g_k + \Phi \cdot q_k + \psi_{21} \cdot q_{k1} \right)$$

- δ Coefficiente di ripartizione delle azioni del terreno di fondazione
- g_k Azioni permanenti senza la parte della platea, ripartite in maniera uniforme
- Φ Fattore di carico dinamico
- $q_k^{}$ Valore caratteristico delle azioni dovute al terreno di fondazione a seguito dell'onda d'urto dell'aria
- ψ_{21} Coefficiente di riduzione per il valore quasi permanente di un'azione concomitante variabile
- q_{k1} Valore caratteristico di un'azione concomitante

$$\delta$$
 = 0.6 (ITC 2017, capitolo 6.4)

 Φ = 1.2 per flessione (ITC 2017, tabella 4)

 $q_k = 100 \text{ kN/m}^2 \text{ (ITC 2017, capitolo 6.4)}$

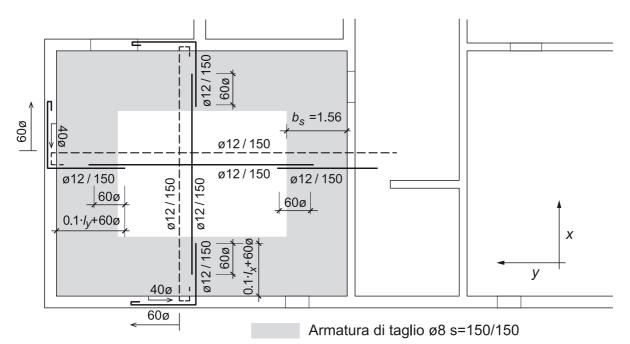
3.6.2 Carichi dell'edificio sovrastante per utilizzo in tempi di pace

Conversione dei carichi lineari per utilizzo in tempi di pace su carichi (sostitutivi) ripartiti in maniera uniforme

$$\psi_{21} \cdot q_{k1} = \left(\left(\frac{60}{2} + 30 + 70 \right) \cdot 6.50 + \left(\frac{40}{2} + 20 \right) \cdot 7.65 \right) \cdot \frac{1}{6.50 \cdot 7.65} = 23 \, \text{kN/m}^2$$

Carico della soletta della costruzione di protezione per utilizzo in tempi di pace

$$g_k$$
 + ψ_{21} · q_{k1} = 0.4 · 25 + 1 + 0.6 · 5 = 14 kN/m²


Pesi propri delle pareti della costruzione di protezione

$$g_k = 2 \cdot (6.50 \cdot 7.65) \cdot \left(\frac{0.30 + 0.20}{2}\right) \cdot \frac{1}{2} \cdot 2.60 \cdot 25 \cdot \frac{1}{6.50 \cdot 7.65} = 5 \text{ kN/m}^2$$

Valore di dimensionamento dell'azione sulla platea

$$q_d = 0.6 \cdot (23 + 14 + 5 + 1.2 \cdot 100) = 97.2 \,\mathrm{kN/m^2}$$

3.6.3 Armatura

3.6.4 Resistenze ultime alla flessione

Indice	Posizione	Armatura	a _{s,ef} [mm²/m]	<i>d</i> [mm]	ρ _{ef} [%]	m_{Rd} [kNm/m]
x+ y+	Campo Direzione x Direzione y	ø12/150 ø12/150	754 754	249 237	0.30 0.32	110 105
x1-	Parete perimetrale inferiore	ø12/150	754	234	0.32	104
x2-	Parete perimetrale superiore	ø12/150	754	234	0.32	104
y1-	Parete perimetrale sinistra	ø12/150	754	222	0.34	98
y2-	Parete intermedia destra	ø12/150	754	222	0.34	98

3.6.5 Sicurezza strutturale soggetta a flessione

Carico limite a flessione

$$q_{Rd} = \left[\frac{12 \cdot (m_{xRd1}^{-} + 2 \cdot m_{xRd}^{+} + m_{xRd2}^{-})}{3 \cdot {l_{x}}^{2} \cdot \frac{l_{x}^{3}}{l_{y}}} + \frac{12 \cdot (m_{yRd1}^{-} + 2 \cdot m_{yRd}^{+} + m_{yRd2}^{-})}{3 \cdot {l_{x}} \cdot {l_{y}} \cdot {l_{x}}^{2}} \right]$$

$$q_{Rd} = \left[\frac{12 \cdot (104 + 2 \cdot 110 + 104)}{3 \cdot 6.25^2 - \frac{6.25^3}{7.4}} + \frac{12 \cdot (98 + 2 \cdot 105 + 98)}{3 \cdot 6.25 \cdot 7.4 - 6.25^2} \right] = 109.9 \,\text{kN/m}^2$$

$$q_{Rd} = 109.9 \,\mathrm{kN/m^2} > q_d = 97.2 \,\mathrm{kN/m^2}$$

3.6.6 Resistenza ultima a taglio

Per la verifica della resistenza ultima a taglio l'azione del terreno di fondazione di tipo l_a sulla platea è pari al valore in base al capitolo 6.4, ITC 2017

$$q_d = 1.6 \cdot q_{Rd} = 1.6 \cdot 109.9 = 175.8 \,\mathrm{kN/m^2}$$

Altezza statica effettiva per il calcolo delle resistenze al taglio:

$$d_v = \frac{234 + 222}{2} = 228$$

Forza di taglio sul lato lungo (y):

$$v_{yd} = q_d \cdot \frac{\left(2 \cdot l_y - l_x - d_v\right) \cdot \left(l_x - d_v\right)}{4 \cdot \left(l_v - d_v\right)} = 175.8 \cdot \frac{\left(2 \cdot 7.4 - 6.25 - 0.233\right) \cdot \left(6.25 - 0.228\right)}{4 \cdot \left(7.4 - 0.228\right)} = 307.1 \text{ kN/m}$$

Forza di taglio sul lato corto (x):

$$v_{xd} = q_d \cdot \frac{(I_x - d_v) \cdot (I_x - d_v)}{4 \cdot (I_x - d_v)} = 175.8 \cdot \frac{(6.25 - 0.228) \cdot (6.25 - 0.228)}{4 \cdot (6.25 - 0.228)} = 264.7 \text{ kN/m}$$

Resistenza al taglio con armatura di taglio

La resistenza al taglio con armatura di taglio viene calcolata con un braccio di leva delle forze interne di $z = 0.95 \cdot d = 0.95 \cdot 228 = 216$ mm e con un'inclinazione del campo di pressione di $\alpha = 30^{\circ}$.

Geometria

Braccio di leva delle forze interne z = 216 mm

Resistenza al taglio con armatura di taglio (SIA 262:2013 4.3.3.3)

Inclinazione del campo di pressione $\alpha = 30^{\circ}$

Armatura di taglio

 $\begin{array}{ll} \mbox{Diametro} & \mbox{\varnothing} = 8 \mbox{ mm} \\ \mbox{Distanza in verticale dal bordo} & \mbox{s_{\perp}} = 150 \mbox{ mm} \\ \mbox{Distanza parallela dal bordo} & \mbox{$s_{||}$} = 150 \mbox{ mm} \\ \end{array}$

Inclinazione dell'armatura di taglio $\beta = 0^{\circ}$

Percentuale dell'armatura di taglio $\rho_{\rm w}$ = 0.22 %

Resistenza dell'armatura di taglio $v_{Rd,s} = 501 \text{ kN/m}$

Coefficiente di riduzione della resistenza a $k_c = 0.55$

compressione del calcestruzzo

Resistenza del campo di compressione $v_{Rd,c}$ = 2'263 kN/m

del calcestruzzo

 $v_{Rd,s}$ = 501 kN/m > v_{yd} = 307.1 kN/m

 $v_{Rd,c}$ = 2'263 kN/m > v_{yd} = 307.1 kN/m

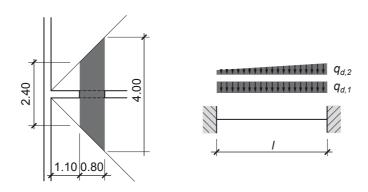
Sui bordi viene posizionata un'armatura di taglio.

Larghezza con armatura di taglio

 $b_s = \max (2 \cdot d_v, I_x/4) = 6.25/4 = 1.56 \text{ m}$

3.7 Appoggio sostitutivo B nella platea

3.7.1 Verifica della sicurezza strutturale


Considerata come trave, ovvero in base alla condizione dell'appoggio sostitutivo

Flessione $q_d \ge 1.6 \cdot \min (1.1 \cdot q_{Rd}; q_{d,max})$

Taglio $q_d = q_{Rd,travi} \le 1.6 \cdot q_{d,max}$

Fattori:

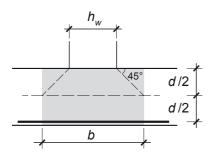
- 1.6 secondo capitolo 6.4, ITC 2017, dato che sull'appoggio praticamente viene trasmesso l'intero carico.
- 1.1 secondo il capitolo 7.7.5, ITC 2017, dato che si tratta di un appoggio sostitutivo

$$\begin{aligned} &1.6 \cdot 1.1 \cdot q_{Rd,soletta} = 1.6 \cdot 1.1 \cdot 109.9 = 193.4 \, \text{kN/m}^2 \\ &1.6 \cdot q_{d,max} = 1.6 \cdot \left(0.6 \cdot (23 + 14 + 5 + 7 + 2.0 \cdot 100) \right) = 239 \, \text{kN/m}^2 \end{aligned}$$

$$q_{d,1}$$
= 2.40 · 193.4 = 464.2 kN/m

$$q_{d2}$$
= (4.00 - 2.40) · 193.4 = 309.4 kN/m

3.7.2 Sicurezza strutturale soggetta a flessione


Momento massimo sulla trave semplice:

$$M_{Od} \sim \frac{q_{d,1} \cdot I^2}{8} + \frac{q_{d,2} \cdot I^2}{9 \cdot \sqrt{3}}$$

 $M_{Od} = \frac{464.2 \cdot 0.8^2}{8} + \frac{309.4 \cdot 0.8^2}{9 \cdot \sqrt{3}} = 49.8 \text{ kNm}$

Ipotesi:

$$M_d^- = M_d^+ = \frac{M_{0d}}{2} = 24.9 \text{ kNm}$$

per definire la larghezza della trave viene selezionata un'ampiezza della forza pari a 45°.

$$h_w = 0.20 \text{ m}$$

 $b = h_w + d = 0.43 \text{ m}$

Resistenza ultima alla flessione

Geometria

Altezza componente h = 280 mmLarghezza b = 430 mmcomponente $c_{nom} = 40 \text{ mm}$ Disposizione armatura $c_{nom} = 40 \text{ mm}$ Diametro 1° strato $c_{nom} = 40 \text{ mm}$

Calcolo della resistenza ultima alla flessione

Armatura di base

Diametro \emptyset = 12 mm Distanza S = 150 mm Strati S = 1 S = 324 mm² Altezza della zona soggetta a S = 12.1 mm pressoflessione

altezza statica d=222.0 mmBraccio di leva delle forze interne z=216.9 mmPercentuale armatura $\rho=0.34 \text{ \%}$ Resistenza ultima alla flessione $M_{Rd}=42 \text{ kNm}$

$$M_{Rd} = 42 \text{ kNm} > M_d^- = M_d^+ = 24.9 \text{ kNm}$$

Carico limite a flessione

$$q_{Rd} = \frac{8}{0.80^2} \cdot (42 + 42) = 1'050 \,\text{kN/m}$$

3.7.3 Resistenza ultima a taglio

Ipotesi:
$$\alpha = 45^{\circ}$$

Qui entrambi i momenti di incastro presentano la stessa grandezza. Per questo non risulta alcuna conversione della forza di taglio.

$$a = z \cdot \cot \alpha = 217 \cdot \cot (45^{\circ}) = 217 \text{ mm}$$

$$V_d \simeq \left(\frac{l}{2} - a\right) \cdot q_{Rd}$$

$$V_d \simeq \left(\frac{0.8}{2} - 0.217\right) \cdot 1'050 = 192.2 \text{ kN}$$

Resistenza al taglio con armatura di taglio

Geometria

Braccio di leva delle forze interne z = 217 mmLarghezza componente $b_w = 430 \text{ mm}$

Resistenza al taglio con armatura di taglio (SIA 262:2013 4.3.3.3)

Inclinazione del campo di pressione α = 45°

Armatura di taglio

Diametro ø = 12 mms = 150 mmDistanza

Numero sezioni $\beta = 0^{\circ}$ Inclinazione dell'armatura di taglio Percentuale dell'armatura di taglio $\rho_{\rm w}$ = 0.35 % Resistenza dell'armatura di taglio $V_{Rd,s} = 196 \text{ kN}$

Coefficiente di riduzione della resistenza

a compressione del calcestruzzo

Resistenza del campo di compressione del calcestruzzo

$$V_{Rd,s}$$
= 196 kN > V_d = 192.2 kN

$$V_{Rd,c}$$
= 1'129 kN > V_d = 192.2 kN

 $k_c = 0.55$

 $V_{Rd,c} = 1'129 \text{ kN}$

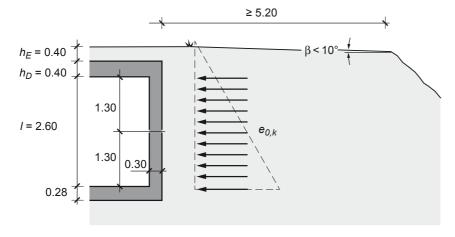
3.8 Pareti perimetrali interrate

Rapporto luce $L_v/L_x = 7.4/2.6 = 2.8 > 2.4$

Le pareti perimetrali interrate verranno dimensionate come solette portanti in un'unica direzione.

3.8.1 Valore di dimensionamento delle azioni

Il dimensionamento delle pareti perimetrali interrate viene effettuato secondo il capitolo 6.5, ITC 2017.


Ipotesi terreno di fondazione:

Angolo di resistenza al taglio

Peso spazio umido

Coefficiente di pressione statica della terra

$$\varphi = 30^{\circ}$$

 $\gamma = 20 \text{ kN/m}^3$
 $K_0 = 0.5$

Pressione statica della terra al centro della parete

$$e_{0,k} = K_0 \cdot \left(h_D + h_E + \frac{I}{2} \right) \cdot \gamma$$

$$e_{0,k} = 0.5 \cdot \left(0.4 + 0.4 + \frac{2.60}{2} \right) \cdot 20 = 21 \text{ kN/m}^2$$

L'effetto in seguito all'onda d'urto dell'aria e all'onda sismica viene definito alla figura 22, ITC 2017

$$q_k = 100 + 340 \cdot \frac{a}{l}$$

 $q_k = 100 + 340 \cdot \frac{0}{2.40} = 100 \text{ kN/m}^2$

Valore di dimensionamento dell'azione

$$q_d = e_{0,k} + \Phi \cdot q_k$$

 $q_d = 21 + 1.2 \cdot 100 = 141 \text{ kN/m}^2$

3.8.2 Armatura

Armatura minima zona soggetta a trazione $a_s = 0.18 \% \cdot 260 \cdot 1'000 = 468 \text{ mm}^2/\text{m} \rightarrow \emptyset 10/150$

Armatura minima zona soggetta a compressione $a_s = 0.10 \% \cdot 260 \cdot 1'000 = 260 \text{ mm}^2/\text{m} \rightarrow \emptyset 10/150$

3.8.3 Resistenze ultime alla flessione

Indice	Posizione	Armatura	a _{s,ef} [mm²/m]	d [mm]	ρ _{ef} [%]	m_{Rd} [kNm/m]
X+	Campo Direzione x	ø10/150	524	270	0.19	84
x1-	Soletta	ø10/150	524	255	0.21	79
x2-	Plinto di fondazione	ø10/150	524	255	0.21	79

3.8.4 Sicurezza strutturale soggetta a flessione

Carico limite a flessione

$$q_{Rd} = \frac{8}{L_x^2} \cdot \left(m_{xRd}^+ + \frac{m_{xRd1}^- + m_{xRd2}^-}{2} \right)$$
$$q_{Rd} = \frac{8}{2.6^2} \cdot \left(84 + \frac{79 + 79}{2} \right) = 192.9 \text{ kN/m}^2$$

$$q_{Rd}$$
= 192.9 kN/m² > q_d = 141 kN/m²

3.8.5 Resistenza ultima a taglio

Verifica della resistenza ultima a taglio con il carico limite a flessione della parete, dato che

$$q_{Rd} \le q_{d,max} \operatorname{con} \Phi = 2.0$$

$$q_{d,max} = e_{0,k} + \Phi \cdot q_k = 21 + 2 \cdot 100 = 221 \text{ kN/m}^2$$

$$q_{Rd}$$
= 192.9 kN/m² $\leq q_{d.max}$ = 221 kN/m²

Altezza statica effettiva per il calcolo delle resistenze al taglio:

$$d_v = 255 \text{ mm}$$

Forza di taglio sul lato lungo (y):

$$v_{yd} = q_{Rd} \cdot \frac{(l_x - d_v)}{2}$$

 $v_{yd} = 192.9 \cdot \frac{(2.6 - 0.255)}{2} = 226.2 \text{ kN/m}$

Resistenza al taglio con armatura di taglio

La resistenza al taglio con armatura di taglio viene calcolata con un braccio di leva delle forze interne di $z = 0.95 \cdot d = 0.95 \cdot 255 = 242$ mm. Si presuppone l'inclinazione del campo di pressione con $\alpha = 30^{\circ}$.

 $v_{Rd.s} = 562 \text{ kN/m}$

 $k_c = 0.55$

Geometria

Braccio di leva delle forze interne z = 242 mm

Resistenza al taglio con armatura di taglio (SIA 262:2013 4.3.3.3)

Inclinazione del campo di pressione $\alpha = 30^{\circ}$

Armatura di taglio

Diametro \emptyset = 8 mm Distanza in verticale dal bordo s_{\perp} = 150 mm Distanza parallela dal bordo $s_{||}$ = 150 mm

Inclinazione dell'armatura di taglio β = 0° Percentuale dell'armatura di taglio $\rho_{\rm w}$ = 0.22 %

Resistenza dell'armatura di taglio Coefficiente di riduzione della resistenza a

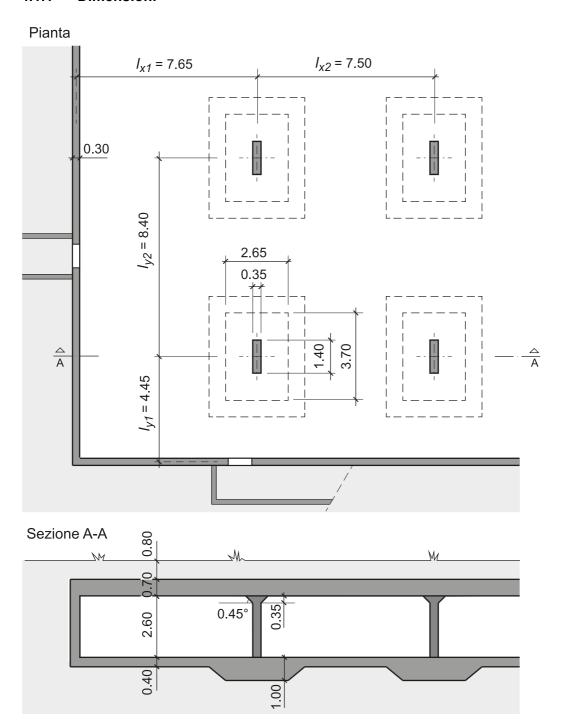
compressione del calcestruzzo

Resistenza del campo di compressione $v_{Rd,c}$ = 2'536 kN/m

del calcestruzzo

$$v_{Rd,s}$$
= 562 kN/m > v_{yd} = 226.2 kN/m
 $v_{Rd,c}$ = 2'536 kN/m > v_{vd} = 226.2 kN/m

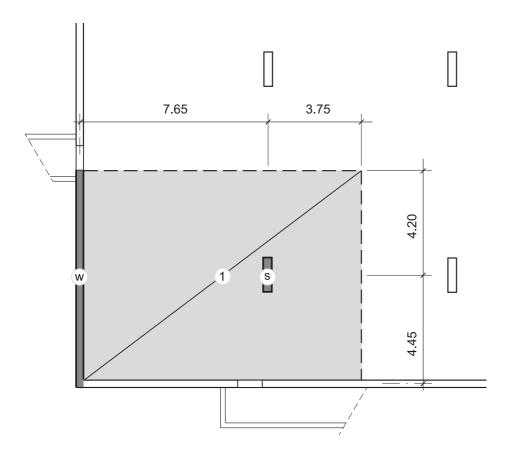
Lungo i bordi lunghi della soletta viene posizionata un'armatura di taglio.


Larghezza con armatura di taglio

$$b_s = \max(2 \cdot d_v, I_x/4) = 2.60 / 4 = 0.65 \text{ m}$$

4 Costruzione di protezione nel garage sotterraneo

4.1 Basi


4.1.1 Dimensioni

4.1.2 Descrizione dei componenti portanti

Per i seguenti componenti verranno eseguite l'analisi strutturale e il dimensionamento:

- Campo 1 soletta su appoggio puntuale
- Campo 1 platea
- Parete perimetrale W
- Pilastro S in calcestruzzo
- Pilastro S in acciaio

La verifica della sicurezza strutturale della soletta durante le operazioni di punzonamento viene eseguita per mezzo di un pilastro in calcestruzzo e in acciaio.

La verifica del punzonamento del rinforzo della fondazione nonché la verifica della forza di taglio della platea viene eseguita esclusivamente con il pilastro in calcestruzzo.

4.1.3 Materiali

Acciaio d'armatura B500B

Valore di dimensionamento del limite di snervamento $f_{sd} = 600 \text{ N/mm}^2$ Modulo di elasticità $E_{sd} = 205'000 \text{ N/mm}^2$

Calcestruzzo C30/37

Valore di dimensionamento della resistenza alla compressione f_{cd} = 44 N/mm² Valore di dimensionamento della tensione tangenziale ultima τ_{cd} = 1.7 N/mm² Valore di dimensionamento della tensione composita f_{bd} = 4.0 N/mm² Modulo di elasticità E_{cm} = 35'000 N/mm²

Grana max. degli inerti $D_{max} = 32 \text{ mm}$

Rivestimento armatura: (valore minimo / valore di calcolo)
verso terra
nell'edificio
35 / 40 mm
20 / 25 mm

Acciaio d'armatura S355

Valore di dimensionamento del limite di snervamento $f_{yd} = 1.3 f_y$

4.1.4 Terreno di fondazione

Terreno di fondazione tipo la

4.2 Soletta su appoggio puntuale

4.2.1 Valore di dimensionamento delle azioni

$$q_d = \sum g_{k,i} + \Phi \cdot q_k \qquad \text{con } g_k = g_{k,EG} + g_{k,AL}$$

q_d valore di dimensionamento delle azioni sulla soletta

 g_{kEG} valore caratteristico del peso proprio della soletta

 $g_{k,AL}$ valore caratteristico del carico strutturale (800 mm di ricopertura in terra)

 Φ fattore di carico dinamico

 q_k valore caratteristico dell'onda d'urto dell'aria

$$g_{k,EG} = 0.70 \text{ m} \cdot 25 \text{ kN/m}^3 = 17.5 \text{ kN/m}^2$$

 $g_{k,\Delta I} = 0.80 \text{ m} \cdot 21 \text{ kN/m}^3 = 16.8 \text{ kN/m}^2$

$$\Phi$$
 = 1.2 / 2.0 (ITC 2017, capitolo 7.7.6)
 q_k = 100 kN/m² (ITC 2017, capitolo 6.3)

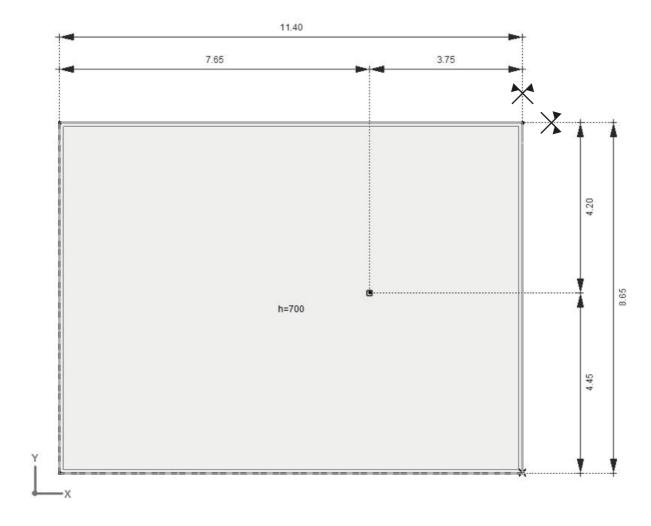
Valore di dimensionamento dell'azione per la sollecitazione a flessione

$$q_d = 17.5 + 16.8 + 1.2 \cdot 100 = 154.3 \,\mathrm{kN/m^2}$$

Valore di dimensionamento dell'azione della sollecitazione per taglio e punzonamento e della sollecitazione a flessione nelle strisce di sostegno durante l'operazione di punzonamento.

$$q_{d max} = 17.5 + 16.8 + 2.0 \cdot 100 = 234.3 \text{ kN/m}^2$$

4.2.2 Altezze statiche e armatura minima


Altezze statiche

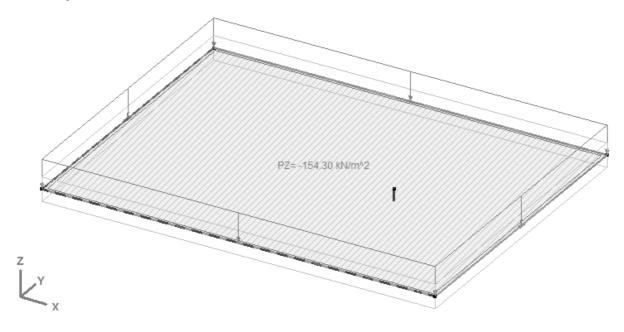
Delle armature superiori d_x = 630 mm d_y = 650 mm d_m = 640 mm Delle armature inferiori d_x = 645 mm d_y = 665 mm d_m = 655 mm

Armatura minima

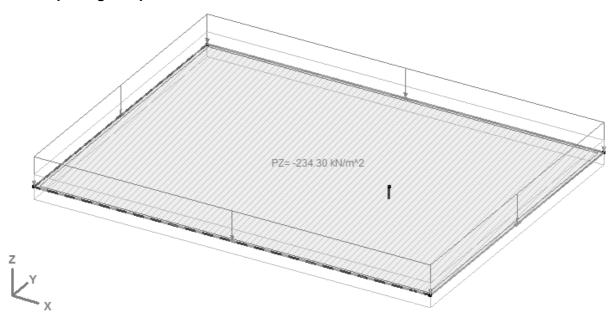
- Armatura minima zona soggetta a trazione $a_s = 0.18 \% \cdot 655 \cdot 1'000 = 1'179 \text{ mm}^2/\text{m} \rightarrow \emptyset 16/150 \text{ (1'340 mm}^2/\text{m)}$
- Armatura minima zona soggetta a compressione: $a_s = 0.10 \% \cdot 655 \cdot 1'000 = 655 \text{ mm}^2/\text{m} \rightarrow \emptyset 12/150 (753 \text{ mm}^2/\text{m})$

4.2.3 Modello statico

La soletta viene fissata in maniera elastica lungo le pareti perimetrali verso terra. Il fissaggio corrisponde al massimo alla resistenza ultima alla flessione dell'armatura di collegamento della parete. Per il pilastro interno la soletta viene appoggiata in modo puntuale.

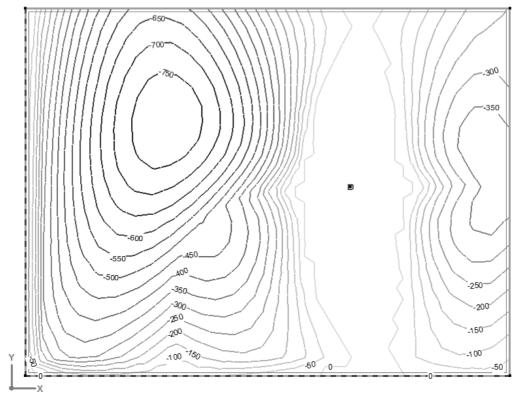

Resistenza ultima alla flessione con \emptyset 10/150: m_{Rd} = 79 kNm/m

Le azioni verranno calcolate con un programma FE.

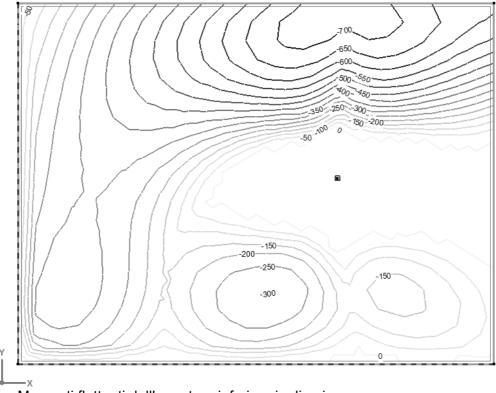

Convenzione utilizzata per la traccia: i momenti flettenti negativi creano sollecitazioni di trazione sul lato inferiore della soletta.

4.2.4 Tipi di carico

Carico per flessione

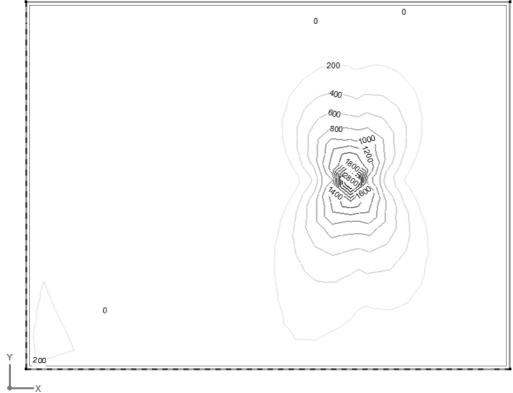


Carico per taglio e punzonamento

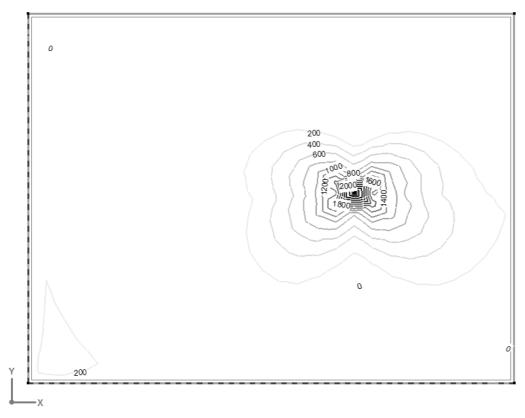


4.2.5 Sicurezza strutturale soggetta a flessione

Momenti flettenti degli strati di armatura inferiori

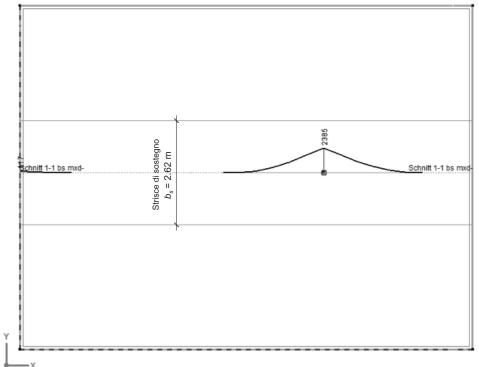


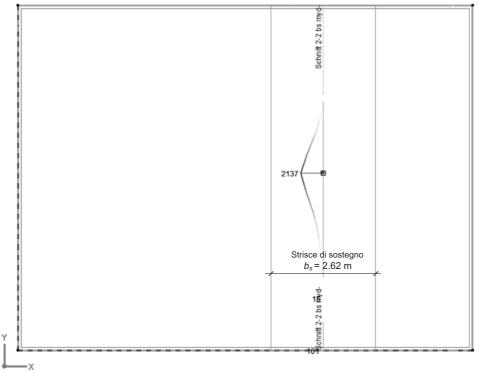
Momenti flettenti dell'armatura inferiore in direzione x



Momenti flettenti dell'armatura inferiore in direzione y

Momenti flettenti degli strati di armatura superiori


Momenti flettenti dell'armatura superiore in direzione x


Momenti flettenti dell'armatura superiore in direzione y

La larghezza rappresentativa b_s della striscia di sostegno viene calcolata secondo la norma SIA 262:2013, capitolo 4.3.6. La distanza r_{sx} e quindi r_{sy} tra l'asse del pilastro e il punto di momento zero in direzione x e y viene definita con il livello di approssimazione 2.

$$r_{sx} = 0.22 \cdot I_x = 0.22 \cdot 7.50 \text{ m} = 1.65 \text{ m}$$

 $r_{sy} = 0.22 \cdot I_y = 0.22 \cdot 8.40 \text{ m} = 1.85 \text{ m}$
 $b_s = 1.5 \cdot \sqrt{r_{sx} \cdot r_{sy}} = 1.5 \cdot \sqrt{1.65 \cdot 1.85} = 2.62 \text{ m} < I_{min} = 7.50 \text{ m}$

Momenti flettenti dell'armatura superiore in direzione x nella striscia di sostegno con $\Phi = 2.0$

Momenti flettenti dell'armatura superiore in direzione y nella striscia di sostegno con $\Phi = 2.0$

Momenti flettenti dell'armatura inferiore in direzione x

Geometria

Altezza componente h = 700 mmRivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ Disposizione armatura 2° strato 0 strato 0 = 16 mm

Calcolo della resistenza ultima alla flessione

Armatura di base

Diametro \emptyset = 16 mm Distanza S = 150 mm Sezione acciaio a_s = 1'340 mm²/m Altezza della zona soggetta a x = 21.5 mm

pressoflessione

altezza statica d = 651.0 mmBraccio di leva delle forze interne z = 641.9 mmPercentuale armatura $\rho = 0.21 \text{ %}$

Resistenza ultima alla flessione m_{Rd} = 516 kNm/m

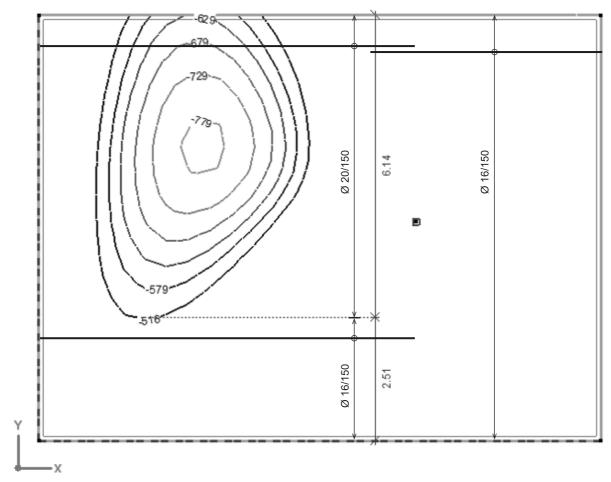
Con la percentuale minima di armatura la resistenza ultima alla flessione è pari a m_{Rd} = 516 kNm/m. Nei campi soggetti a una maggiore sollecitazione è necessaria una percentuale di armatura più elevata.

Geometria

Altezza componente h = 700 mmRivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ Disposizione armatura 2° strato 0 = 16 mm

Calcolo della resistenza ultima alla flessione

Armatura di base

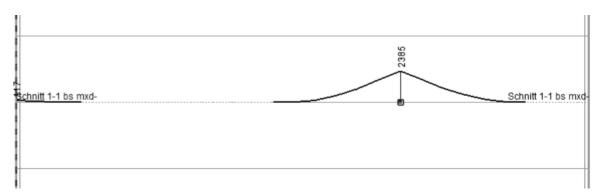

Diametro \emptyset = 20 mm Distanza s = 150 mm Sezione acciaio a_s = 2'094 mm²/m Altezza della zona soggetta a x = 33.6 mm

pressoflessione

altezza statica d = 649.0 mm Braccio di leva delle forze interne z = 634.7 mm Percentuale armatura ρ = 0.32 %

Resistenza ultima alla flessione m_{Rd} = 798 kNm/m

 $m_{Rd} = 798 \text{ kNm/m} > m_{xd} = 791 \text{ kNm/m}$



(rappresentato solo $m_{xd} < m_{Rd} = -516 \text{ kNm/m}$)

Verifica della flessione dell'armatura superiore in direzione ${\bf x}$

Strisce di sostegno

Sezione 1-1 / b_s = 2.62 m

Geometria

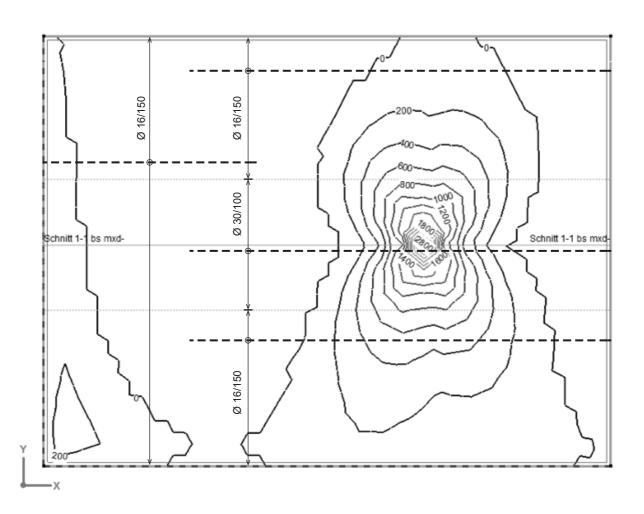
Altezza componente h = 700 mmRivestimento in calcestruzzo $c_{nom} = 40 \text{ mm}$ Disposizione armatura 3° strato Diametro 4° strato $\emptyset = 30 \text{ mm}$

Calcolo della resistenza ultima alla flessione

Armatura di base

Diametro \emptyset = 30 mm Distanza S = 100 mm Sezione acciaio a_s = 7'069 mm²/m Altezza della zona soggetta a x = 113.4 mm

pressoflessione


altezza statica d = 615.0 mmAltezza di riferimento zona soggetta x/d = 0.18

a compressione

Braccio di leva delle forze interne z = 566.8 mmPercentuale armatura $\rho = 1.15 \%$

Resistenza ultima alla flessione $m_{Rd} = 2'404 \text{ kNm/m}$

$$m_{Rd}$$
 = 2'404 kNm/m > m_{xd} = 2'385 kNm/m

Momento flettente dell'armatura inferiore in direzione y

Geometria

h = 700 mmAltezza componente Rivestimento in calcestruzzo c_{nom} = 25 mm Disposizione armatura 1° strato

Calcolo della resistenza ultima alla flessione

Armatura di base

Diametro ø = 16 mmDistanza s = 150 mm $a_s = 1'340 \text{ mm}^2/\text{m}$ Sezione acciaio

Altezza della zona soggetta a

Resistenza ultima alla flessione

pressoflessione altezza statica

d = 667.0 mmz = 657.9 mm ρ = 0.20 %

x = 21.5 mm

Braccio di leva delle forze interne Percentuale armatura

 m_{Rd} = 529 kNm/m

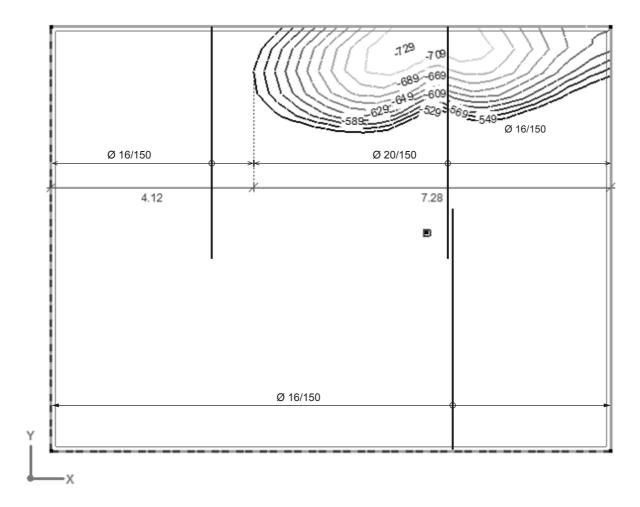
Con la percentuale minima di armatura la resistenza ultima alla flessione è pari a m_{Rd} = 529 kNm/m. Nei campi soggetti a una maggiore sollecitazione è necessaria una percentuale di armatura più elevata.

Geometria

Altezza componente h = 700 mmRivestimento in calcestruzzo c_{nom} = 25 mm 1° strato Disposizione armatura

Calcolo della resistenza ultima alla flessione

Armatura di base

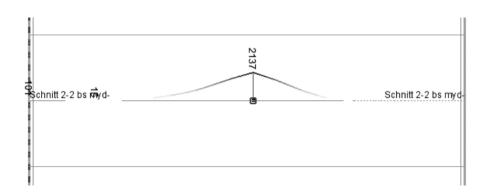

Percentuale armatura

ø = 20 mmDiametro Distanza s = 150 mm $a_s = 2'094 \text{ mm}^2/\text{m}$ Sezione acciaio

Altezza della zona soggetta a x = 33.6 mmpressoflessione altezza statica d = 665.0 mmBraccio di leva delle forze interne z = 650.7 mm

 ρ = 0.31 % Resistenza ultima alla flessione m_{Rd} = 818 kNm/m

 $m_{Rd} = 818 \text{ kNm/m} > m_{vd} = 729 \text{ kNm/m}$



(rappresentato solo $m_{yd} < m_{Rd} = -529 \text{ kNm/m}$)

Verifica della flessione dell'armatura superiore in direzione y

Strisce di sostegno

Sezione 2-2 / b_s = 2.62 m

Geometria

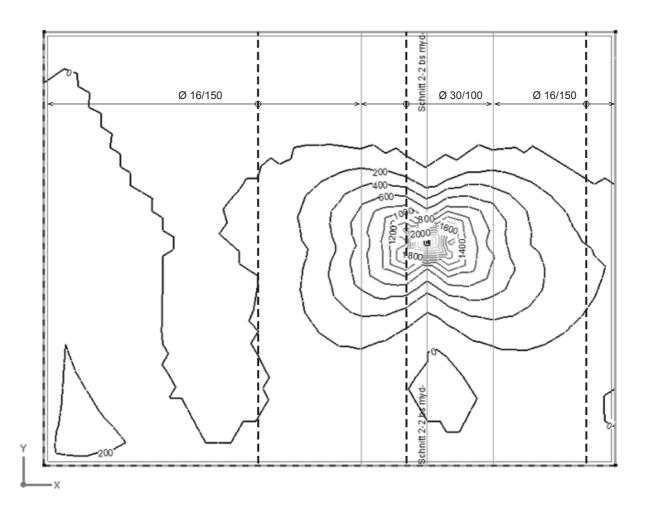
Altezza componente h = 700 mmRivestimento in calcestruzzo $c_{nom} = 40 \text{ mm}$ Disposizione armatura 4. strato

Calcolo della resistenza ultima alla flessione

Armatura di base

Diametro \emptyset = 30 mm Distanza S = 100 mm Sezione acciaio a_s = 7'069 mm²/m Altezza della zona soggetta a x = 113.4 mm

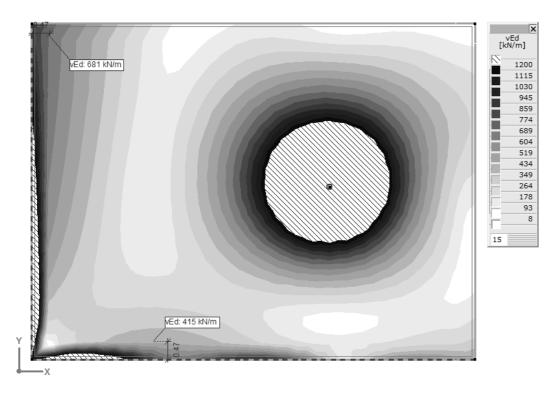
pressoflessione


altezza statica d = 645.0 mmAltezza di riferimento zona soggetta a x/d = 0.18

compressione

Braccio di leva delle forze interne z = 596.8 mm Percentuale armatura ρ = 1.10 %

Resistenza ultima alla flessione m_{Rd} = 2'531 kNm/m


 m_{Rd} = 2'531 kNm/m > m_{yd} = 2'137 kNm/m

4.2.6 Resistenza ultima a taglio

Forza di taglio determinante

La forza di taglio determinante si trova ad una distanza pari a $a = d_v/2 = 644/2 = 322$ mm dal bordo dell'appoggio (oppure 763 mm e quindi 713 mm dalle assi della parete) e al massimo misura $v_d = 681$ kN/m

Resistenza al taglio senza armatura di taglio

Lo sfruttamento dell'armatura a flessione viene calcolato con $q_{d,max}(\Phi=2.0)$. Nelle pareti perimetrali i momenti flettenti della soletta $m_d(\Phi=2.0)$ corrispondono alle resistenze ultime alla flessione delle pareti perimetrali. La resistenza al taglio della soletta senza armatura di taglio sulle pareti perimetrali viene calcolata nel seguente modo:

Momento flettente della soletta $m_d (\Phi = 2.0) = 79 \text{ kNm/m} = m_{Rd,parete}$

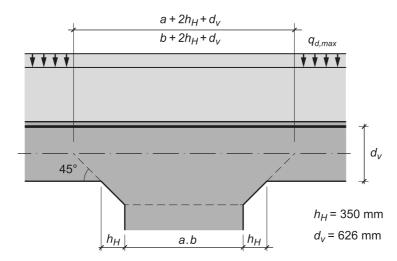
Resistenza ultima alla flessione della soletta $m_{Rd,soletta}$ = 504 o 517 kNm/m

Sfruttamento dell'armatura a flessione $m_d (\Phi = 2.0)/m_{Rd,soletta} = 79/504 = 0.16$

Geometria

altezza statica d = 644 mm

Resistenza al taglio senza armatura di taglio (SIA 262:2013 4.3.3.2)


Sfruttamento dell'armatura a flessione $m_d/m_{Rd} = 0.16$

Stato dell'armatura a flessione Elastico
Dilatazione dell'armatura a flessione $\varepsilon_{v} = 0.0005$ Coefficiente grana max. $k_{g} = 1.00$ Coefficiente resistenza al taglio $k_{d} = 0.77$ Altezza statica effettiva $d_{v} = 644$ mm
Resistenza al taglio $v_{Rd} = 841$ kN/m

 v_{Rd} = 841 kN/m > v_d = 681 kN/m

Sulle pareti perimetrali nella soletta non è necessaria una armatura di taglio.

4.2.7 Punzonamento pilastro in calcestruzzo

La superficie di appoggio presenta dimensioni pari a a_x = 1'050 mm, a_y = 2'100 mm. In questo esempio viene selezionato il coefficiente k_e = 0.9. La verifica del punzonamento viene effettuata con il livello di approssimazione 2 secondo la norma SIA 262.

Valore di dimensionamento del carico del punzonamento

Superficie interna della sezione verificata A

$$A = a_x \cdot a_y + 2 \cdot a_x \cdot \frac{d_v}{2} + 2 \cdot a_y \cdot \frac{d_v}{2} + \pi \cdot \left(\frac{d_v}{2}\right)^2$$

$$A = 1'050 \cdot 2'100 + 2 \cdot 1'050 \cdot \frac{626}{2} + 2 \cdot 2'100 \cdot \frac{626}{2} + \pi \left(\frac{626}{2}\right)^2 = 4'484'679 \text{ mm}^2 = 4.48 \text{ m}^2$$

Valore di dimensionamento del carico del punzonamento V_d

$$V_d = N_d - q_{d max} \cdot A = 13'400 - 234.3 \cdot 4.485 = 12'349 \text{ kN}$$

Selezione dell'armatura a flessione e calcolo delle resistenze ultime alla flessione

Se è presente il pilastro in calcestruzzo, deve essere aumentata l'armatura nelle strisce di sostegno in direzione x e y.

Disposizione armatura

Armatura in direzione x 3° strato Armatura in direzione y 4° strato

Armatura superiore in direzione x

Armatura di base $\emptyset = 34 \text{ mm}$ s = 100 mm $A_{s, esis} = 9'079 \text{ mm}^2/\text{m}$ $d_x = 609 \text{ mm}$ $m_{Rd} = 2'980 \text{ kNm/m}$

Armatura superiore in direzione y

Armatura di base $\emptyset = 34 \text{ mm}$ s = 100 mm $A_{s, esis} = 9'079 \text{ mm}^2/\text{m}$ $d_y = 643 \text{ mm}$ $m_{Rd} = 3'166 \text{ kNm/m}$

L'altezza statica effettiva d_v è pari a

$$d_v = \frac{d_x + d_y}{2} = \frac{609 + 643}{2} = 626 \text{ mm}$$

Resistenza a punzonamento senza armatura a punzonamento

Perimetro della sezione verificata u

$$u = 2.1'050 + 2.2 \cdot 1.5 \cdot 626 + 2 \cdot \pi \cdot \frac{626}{2} = 7'823 \text{ mm}$$

Perimetro ridotto della sezione verificata *u*_{red}

$$u_{red} = u \cdot k_e = 7'823 \cdot 0.9 = 7'040 \text{ mm}$$

Diametro *b* di una circonferenza con superficie uguale all'interno della superficie della sezione verificata

$$b = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{4'484'679 \cdot 4}{\pi}} = 2'390 \text{ mm}$$

Eccentricità ideale tra la forza applicata risultante e il baricentro della sezione verificata eu

$$e_u = b \cdot \left(\frac{1}{k_e} - 1\right) = 2'390 \cdot \left(\frac{1}{0.9} - 1\right) = 266 \text{ mm}$$

I componenti dell'eccentricità in direzione x e y verranno ripartiti in maniera uniforme

$$e_{u,x} = e_{u,y} = \sqrt{\frac{e_u^2}{2}} = \sqrt{\frac{266^2}{2}} = 188 \text{ mm}$$

Distanza r_s tra l'asse del pilastro e il punto di momento zero

$$r_{sx} = 0.22 \cdot I_x = 0.22 \cdot 7.5 = 1.65 \text{ m}$$

$$r_{sy} = 0.22 \cdot l_y = 0.22 \cdot 8.4 = 1.85 \text{ m}$$

Larghezza rappresentativa b_s delle strisce di sostegno

$$b_s = 1.5 \cdot \sqrt{r_{sx} \cdot r_{sy}} = 1.5 \cdot \sqrt{1.65 \cdot 1.85} = 2.62 \text{ m}$$

Momenti flettenti m_{sd} nelle strisce di sostegno

$$m_{sdx} = m_{sdy} = V_d \cdot \left(\frac{1}{8} + \frac{e_{u,i}}{2 \cdot b_s}\right) = 349 \cdot \left(\frac{1}{8} + \frac{188}{2 \cdot 2'620}\right) = 1'986 \text{ kNm/m}$$

Rotazioni delle solette ψ

$$\psi_{x} = 1.5 \cdot \frac{r_{sx}}{d_{x}} \cdot \frac{f_{sd}}{E_{s}} \cdot \left(\frac{m_{sdx}}{m_{Rd}}\right)^{3/2} = 1.5 \cdot \frac{1.65}{0.609} \cdot \frac{600}{205'000} \cdot \left(\frac{1'986}{2'980}\right)^{3/2} = 0.0065$$

$$\psi_y = 1.5 \cdot \frac{r_{sy}}{d_y} \cdot \frac{f_{sd}}{E_s} \cdot \left(\frac{m_{sdy}}{m_{Rd}}\right)^{3/2} = 1.5 \cdot \frac{1.85}{0.643} \cdot \frac{600}{205'000} \cdot \left(\frac{1'986}{3'166}\right)^{3/2} = 0.0063$$

Rotazione della soletta determinante ψ = 0.0065

Coefficiente k_r per il calcolo della dimensione del componente, della rotazione della soletta e della grana massima

$$k_r = \frac{1}{0.45 + 0.18 \cdot \psi \cdot d \cdot k_g} = \frac{1}{0.45 + 0.18 \cdot 0.0065 \cdot 626 \cdot \frac{48}{16 + 32}} = 0.848$$

Resistenza a punzonamento $V_{Rd,c}$ senza armatura a punzonamento

$$V_{Rd,c} = k_r \cdot \tau_{cd} \cdot d_v \cdot u_{red}$$

$$V_{Rd,c} = 0.848 \cdot 1.7 \cdot 626 \cdot 7'040 \cdot 10^{-3} = 6'354 \text{ kN}$$

Il valore limite di $V_{Rd,c}$ deve essere calcolato in maniera iterativa. Il valore limite è pari a:

$$V_{Rd,c}$$
 = 8'585 kN

Rotazione della soletta
$$\psi$$
 = 0.0038

$$k_r = 1.146$$

$$V_{Rd,c}$$
 = 8'585 kN < V_d =12'349 kN

La verifica del punzonamento non può essere eseguita senza armatura a punzonamento.

Resistenza a punzonamento con armatura a punzonamento

La resistenza a punzonamento con armatura a punzonamento viene limitata dalla resistenza alla rottura della prima diagonale della pressione del calcestruzzo, adiacente alla superficie sostenuta.

$$V_{Rd.c.max} = 2 \cdot k_r \cdot \tau_{cd} \cdot d_v \cdot u_{red}$$

$$V_{Rd\ c\ max} = 2 \cdot 0.848 \cdot 1.7 \cdot 626 \cdot 7'040 \cdot 10^{-3} = 12'707 \text{ kN}$$

Il valore limite di $V_{Rd,c,max}$ in base al calcolo iterativo è il seguente:

$$V_{Rdcmax} = 12'533 \text{ kN}$$

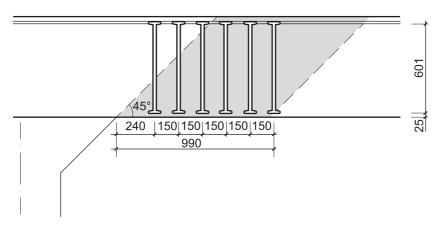
Rotazione della soletta
$$\psi$$
 = 0.0066

$$k_r = 0.836$$

Valore di dimensionamento della forza di taglio $V_{d,s}$ dell'armatura a punzonamento

$$V_{d,s} = V_d - V_{Rd,c} \ge \frac{V_d}{2}$$

$$V_{d,s}$$
 =12'349 - 6'354 = 5'995 kN < $\frac{12'349}{2}$ = 6'175 kN


$$V_{d.s}$$
= 6'175 kN

Vengono selezionati 16 listelli di punzonamento con elementi di armatura disposti in senso radiale.

Diametro: $\phi_{sw} = 30 \text{ mm}$

Distanza radiale: $s_1 = 150 \text{ mm} < 200 + \frac{d}{6} = 305 \text{ mm}$

Distanza dal bordo: $s_0 = 240 \text{ mm} < s_{1,max} = 305 \text{ mm}$

Numero degli elementi di armatura nella distanza tra $0.35d_v$ e d_v dalla superficie sostenuta

$$n = 3 \cdot 16 = 48$$

Valore di dimensionamento della tensione σ_{sd} nell'armatura a punzonamento

$$\sigma_{sd} = \frac{E_s \cdot \psi}{6} \cdot \left(1 + \frac{f_{bd}}{f_{sd}} \cdot \frac{d}{\phi_{sw}}\right) = \frac{205'000 \cdot 0.0065}{6} \cdot \left(1 + \frac{4.0}{600} \cdot \frac{626}{30}\right) = 252 \text{ N/mm}^2$$

Resistenza dell'armatura a punzonamento $V_{Rd,s}$

$$V_{Rd,s} = \sum A_{sw} \cdot k_e \cdot \sigma_{sd} \cdot \sin \beta = 48 \cdot \pi \cdot \frac{30^2}{4} \cdot 0.9 \cdot 252 \cdot \sin (90^\circ) \cdot 10^{-3} = 7'691 \text{ kN}$$

$$V_{Rd,s} = 7'691 \text{ kN} > V_{d,s} = 6'175 \text{ kN}$$

Resistenza a punzonamento esterna all'area con armatura a punzonamento

La lunghezza necessaria dei listelli di punzonamento deve essere selezionata in modo da ottenere una sufficiente resistenza a punzonamento del calcestruzzo $V_{Rd,c,out}$ esterna all'area con armatura a punzonamento.

selezionato:
$$I_1 = 240 + 5 \cdot 150 = 990 \text{ mm}$$

Altezza statica effettiva $d_{v,out}$ esterna all'area con armatura a punzonamento

$$d_{v.out} = d_v - c_v = 626 - 25 = 601 \text{ mm}$$

Superficie interna della sezione verificata

$$A_{out} = a_x \cdot a_y + 2 \cdot a_x \cdot \left(I_1 + \frac{d_{v,out}}{2}\right) + 2 \cdot a_y \cdot \left(I_1 + \frac{d_{v,out}}{2}\right) + \pi \cdot \left(I_1 + \frac{d_{v,out}}{2}\right)^2$$

$$A_{out} = 1'050 \cdot 2'100 + 2 \cdot 1'050 \cdot \left(990 + \frac{601}{2}\right) + 2 \cdot 2'100 \cdot \left(990 + \frac{601}{2}\right) + \pi \left(990 + \frac{601}{2}\right)^2$$

$$A_{out}$$
 = 15'567'128 mm² = 15.57 m²

Valore di dimensionamento del carico del punzonamento esterno V_{d.out}

$$V_{d,out} = N_d - q_{d,max} \cdot A_{out} = 13'400 - 234.3 \cdot 15.57 = 9'753 \text{ kN}$$

Diametro della superficie interna della sezione verificata, convertita in una circonferenza di uguale superficie

$$b_{out} = \sqrt{\frac{A_{out} \cdot 4}{\pi}} = \sqrt{\frac{15'567'128 \cdot 4}{\pi}} = 4'452 \text{ mm}$$

Perimetro della sezione verificata u_{out} esterna all'area con armatura a punzonamento

$$u_{out} = 2 \cdot a_x + 2 \cdot 2 \cdot 1.5 \cdot d_{v,out} + 2 \cdot \pi \cdot \left(I_1 + \frac{d_{v,out}}{2} \right)$$

$$u_{out} = 2 \cdot 1'050 + 2 \cdot 2 \cdot 1.5 \cdot 601 + 2 \cdot \pi \cdot \left(990 + \frac{601}{2} \right) = 13'184 \text{ mm}$$

Coefficiente k_e per la riduzione del perimetro della sezione verificata

$$k_{e,out} = \frac{1}{1 + \frac{e_u}{b_{out}}} = \frac{1}{1 + \frac{266}{4'452}} = 0.94$$

Perimetro ridotto della sezione verificata esterna uout.red

$$u_{out,red} = u_{out} \cdot k_{e,out} = 13'814 \cdot 0.94 = 13'037 \text{ mm}$$

Momenti flettenti m_{sd} nelle strisce di sostegno

$$m_{sdx} = m_{sdy} = V_{d,out} \cdot \left(\frac{1}{8} + \frac{e_{u,i}}{2 \cdot b_s}\right) = 9'753 \cdot \left(\frac{1}{8} + \frac{188}{2 \cdot 2'620}\right) = 1'569 \text{ kNm/m}$$

Rotazioni delle solette ψ

$$\psi_{x} = 1.5 \cdot \frac{r_{sx}}{d_{x}} \cdot \frac{f_{sd}}{E_{s}} \cdot \left(\frac{m_{sdx}}{m_{Rd}}\right)^{3/2} = 1.5 \cdot \frac{1.65}{0.609} \cdot \frac{600}{205'000} \cdot \left(\frac{1'569}{2'980}\right)^{3/2} = 0.0045$$

$$\psi_{y} = 1.5 \cdot \frac{r_{sy}}{d_{v}} \cdot \frac{f_{sd}}{E_{s}} \cdot \left(\frac{m_{sdy}}{m_{Rd}}\right)^{3/2} = 1.5 \cdot \frac{1.85}{0.643} \cdot \frac{600}{205'000} \cdot \left(\frac{1'569}{3'166}\right)^{3/2} = 0.0044$$

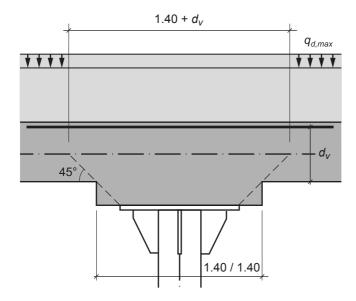
Rotazione della soletta determinante $\psi = 0.0045$

Coefficiente k_r per il calcolo della dimensione del componente, della rotazione della soletta e della grana massima

$$k_r = \frac{1}{0.45 + 0.18 \cdot \psi \cdot d \cdot k_g} = \frac{1}{0.45 + 0.18 \cdot 0.0045 \cdot 626 \cdot \frac{48}{16 + 32}} = 1.040$$

Resistenza a punzonamento $V_{Rd,c,out}$ esterna all'area con armatura a punzonamento

$$V_{Rd.c.out} = k_r \cdot \tau_{cd} \cdot d_{v.out} \cdot u_{out.red}$$


$$V_{Rd,c,out} = 1.040 \cdot 1.7 \cdot 601 \cdot 13'037 \cdot 10^{-3} = 13'849 \text{ kN}$$

Il valore limite di $V_{Rd,c,out}$ in base al calcolo iterativo è il seguente:

$$V_{Rd,c,out}$$
 = 11'787 kN Rotazione della soletta ψ = 0.0060 k_r = 0.885

$$V_{Rd,c,out} = 11'787 \text{ kN} > V_{d,out} = 9'753 \text{ kN}$$

4.2.8 Punzonamento pilastro in acciaio

La verifica del punzonamento viene eseguita all'esterno del fungo del solaio in calcestruzzo. Il fungo del solaio in calcestruzzo presenta dimensioni pari a $a_x = a_y = 1'400$ mm. In questo esempio in base alla ridotta rigidità del pilastro rispetto alla soletta viene scelto il coefficiente $k_e = 1.0$. La verifica del punzonamento viene effettuata con il livello di approssimazione 2 secondo la norma SIA 262.

Valore di dimensionamento del carico del punzonamento

Superficie interna della sezione verificata A

$$A = a_x \cdot a_y + 2 \cdot a_x \cdot \frac{d_v}{2} + 2 \cdot a_y \cdot \frac{d_v}{2} + \pi \cdot \left(\frac{d_v}{2}\right)^2$$

$$A = 1'400 \cdot 1'400 + 2 \cdot 1'400 \cdot \frac{630}{2} + 2 \cdot 1'400 \cdot \frac{630}{2} + \pi \left(\frac{630}{2}\right)^2 = 4'035'725 \text{ mm}^2 = 4.04 \text{ m}^2$$

Valore di dimensionamento del carico del punzonamento V_d

$$V_d = N_d - q_{d max} \cdot A = 13'400 - 234.3 \cdot 4.04 = 12'454 \text{ kN}$$

Selezione dell'armatura a flessione e calcolo delle resistenze ultime alla flessione

Disposizione armatura

Armatura in direzione x 3° strato Armatura in direzione y 4° strato

Armatura superiore in direzione x

Armatura di base

$$\emptyset = 30 \text{ mm}$$

 $s = 100 \text{ mm}$
 $A_{s, esis} = 7'069 \text{ mm}^2/\text{m}$
 $d_x = 615 \text{ mm}$

 m_{Rd} = 2'404 kNm/m

Armatura superiore in direzione y

Armatura di base
$$\emptyset = 30 \text{ mm}$$

 $s = 100 \text{ mm}$
 $A_{s, esis} = 7'069 \text{ mm}^2/\text{m}$
 $d_y = 645 \text{ mm}$
 $m_{Rd} = 2'531 \text{ kNm/m}$

L'altezza statica effettiva d_v è pari a

$$d_v = \frac{d_x + d_y}{2} = \frac{615 + 645}{2} = 630 \text{ mm}$$

Resistenza a punzonamento senza armatura a punzonamento

Perimetro della sezione verificata u

$$u = 2 \cdot 1'400 + 2 \cdot 1'400 + 2 \cdot \pi \cdot \frac{630}{2} = 7'579 \text{ mm}$$

Distanza r_s tra l'asse del pilastro e il punto di momento zero

$$r_{sx} = 0.22 \cdot I_x = 0.22 \cdot 7.5 = 1.65 \text{ m}$$

 $r_{sy} = 0.22 \cdot I_y = 0.22 \cdot 8.4 = 1.85 \text{ m}$

Larghezza rappresentativa b_s delle strisce di sostegno

$$b_s = 1.5 \cdot \sqrt{r_{sx} \cdot r_{sy}} = 1.5 \cdot \sqrt{1.65 \cdot 1.85} = 2.62 \text{ m}$$

Momenti flettenti m_{sd} nelle strisce di sostegno

$$m_{sdx} = m_{sdy} = V_d \cdot \left(\frac{1}{8} + \frac{e_{u,i}}{2 \cdot b_s}\right)$$

 $m_{sdx} = m_{sdy} = 12'458 \cdot \left(\frac{1}{8} + \frac{0}{2 \cdot 2'620}\right) = 1'557 \text{ kNm/m}$

Rotazioni delle solette ψ

$$\psi_{x} = 1.5 \cdot \frac{r_{sx}}{d_{x}} \cdot \frac{f_{sd}}{E_{s}} \cdot \left(\frac{m_{sdx}}{m_{Rd}}\right)^{3/2}$$

$$\psi_{x} = 1.5 \cdot \frac{1.65}{0.615} \cdot \frac{600}{205'000} \cdot \left(\frac{1'557}{2'404}\right)^{3/2} = 0.00614$$

$$\psi_{y} = 1.5 \cdot \frac{r_{sy}}{d_{y}} \cdot \frac{f_{sd}}{E_{s}} \cdot \left(\frac{m_{sdy}}{m_{Rd}}\right)^{3/2}$$

$$\psi_{y} = 1.5 \cdot \frac{1.85}{0.645} \cdot \frac{600}{205'000} \cdot \left(\frac{1'557}{2'531}\right)^{3/2} = 0.00607$$

Rotazione della soletta determinante ψ = 0.00614

Coefficiente k_r per calcolare la dimensione del componente, della rotazione della soletta e della grana massima

$$k_r = \frac{1}{0.45 + 0.18 \cdot \psi \cdot d \cdot k_g}$$

$$k_r = \frac{1}{0.45 + 0.18 \cdot 0.00614 \cdot 630 \cdot \frac{48}{16 + 32}} = 0.873$$

Resistenza a punzonamento $V_{Rd,c}$ senza armatura a punzonamento

$$V_{Rd,c} = k_r \cdot \tau_{cd} \cdot d_v \cdot u$$

 $V_{Rd,c} = 0.873 \cdot 1.7 \cdot 630 \cdot 7'579 \cdot 10^{-3} = 7'082 \text{ kN}$

Il valore limite di $V_{Rd,c}$ deve essere calcolato in maniera iterativa. Il valore limite è pari a:

$$V_{Rd,c}$$
 = 9'143 kN Rotazione della soletta ψ = 0.0039 k_r = 1.226

$$V_{Rd,c}$$
= 9'143 kN < V_d = 12'454 kN

La verifica del punzonamento non può essere eseguita senza armatura a punzonamento.

Resistenza a punzonamento con armatura a punzonamento

La resistenza a punzonamento con armatura a punzonamento viene limitata dalla resistenza alla rottura della prima diagonale della pressione del calcestruzzo, adiacente alla superficie sostenuta.

$$V_{Rd,c,max} = 2 \cdot k_r \cdot \tau_{cd} \cdot d_v \cdot u_{red}$$

 $V_{Rd,c,max} = 2 \cdot 0.873 \cdot 1.7 \cdot 630 \cdot 7'579 \cdot 10^{-3} = 14'164 \text{ kN}$

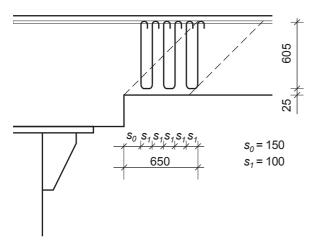
Il valore limite di $V_{Rd,c,max}$ in base al calcolo iterativo è il seguente:

$$V_{Rd,c,max}$$
 = 13'314 kN Rotazione della soletta ψ = 0.0068 k_r = 0.820

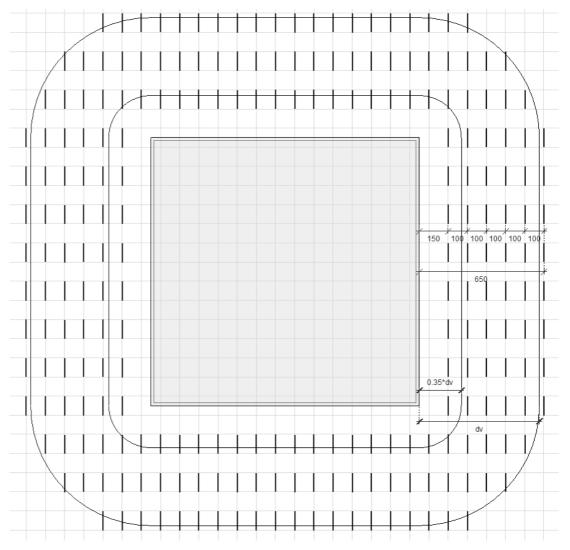
Valore di dimensionamento della forza di taglio $V_{d,s}$ dell'armatura a punzonamento

$$V_{d,s} = V_d - V_{Rd,c} \ge \frac{V_d}{2}$$

$$V_{d,s} = 12'454 - 7'082 = 5'372 \text{ kN} < \frac{12'454}{2} = 6'227 \text{ kN}$$


$$V_{d,s}$$
= 6'227 kN

Verranno selezionate staffe con una distanza pari a s = 100/100 mm.


Diametro: $\phi_{sw} = 10 \text{ mm}$

Distanza: $s_1 = 100 \text{ mm} < 200 + \frac{d}{6} = 305 \text{ mm}$

Distanza dal bordo $s_0 = 150 \text{ mm} < s_{1,max} = 305 \text{ mm}$

Numero delle staffe nella distanza tra $0.35d_v$ e d_v dalla superficie sostenuta n = 328

Valore di dimensionamento della tensione σ_{sd} nell'armatura a punzonamento

$$\sigma_{sd} = \frac{E_s \cdot \psi}{6} \cdot \left(1 + \frac{f_{bd}}{f_{sd}} \cdot \frac{d}{\emptyset_{sw}} \right)$$

$$\sigma_{sd} = \frac{205'000 \cdot 0.0061}{6} \cdot \left(1 + \frac{4.0}{600} \cdot \frac{630}{10} \right) = 298 \,\text{N/mm}^2$$

Resistenza dell'armatura a punzonamento $V_{Rd,s}$

$$V_{Rd,s} = \sum A_{sw} \cdot k_e \cdot \sigma_{sd} \cdot \sin \beta$$

$$V_{Rd,s} = 328 \cdot \pi \cdot \frac{10^2}{4} \cdot 1.0 \cdot 298 \cdot \sin (90^\circ) \cdot 10^{-3} = 7'672 \text{ kN}$$

$$V_{Rd,s} = 7'672 \text{ kN} > V_d = 6'227 \text{ kN}$$

Resistenza a punzonamento esterna all'area con armatura a punzonamento

La lunghezza necessaria dei listelli di punzonamento deve essere selezionata in modo da ottenere una sufficiente resistenza a punzonamento del calcestruzzo $V_{Rd,c,out}$ esterna all'area con armatura a punzonamento.

selezionato: $I_1 = 150 + 5 \cdot 100 = 650 \text{ mm}$

Altezza statica effettiva $d_{v,out}$ esterna all'area con armatura a punzonamento

$$d_{v.out} = d_v - c_v = 630 - 25 = 605 \text{ mm}$$

Superficie interna della sezione verificata

$$A_{out} = a_x \cdot a_y + 2 \cdot a_x \cdot \left(I_1 + \frac{d_{v,out}}{2}\right) + 2 \cdot a_y \cdot \left(I_1 + \frac{d_{v,out}}{2}\right) + \pi \cdot \left(I_1 + \frac{d_{v,out}}{2}\right)^2$$

$$A_{out} = 1'400 \cdot 1'400 + 2 \cdot 1'400 \cdot \left(650 + \frac{605}{2}\right) + 2 \cdot 1'400 \cdot \left(650 + \frac{605}{2}\right) + \pi \left(650 + \frac{605}{2}\right)^2$$

 A_{out} = 10'144'230 mm² = 10.14 m²

Valore di dimensionamento del carico del punzonamento esterno V_{d.out}

$$V_{d,out} = N_d - q_{d,max} \cdot A_{out} = 13'400 - 234.3 \cdot 10.14 = 11'023 \text{ kN}$$

Perimetro della sezione verificata u_{out} esterna all'area con armatura a punzonamento

$$u_{out} = 2 \cdot a_x + 2 \cdot a_y + 2 \cdot \pi \cdot \left(\frac{d_{v,out}}{2} + I_1\right)$$

$$u_{out} = 2 \cdot 1'400 + 2 \cdot 1'400 + 2 \cdot \pi \cdot \left(\frac{605}{2} + 650\right) = 11'585 \text{ mm}$$

Momenti flettenti m_{sd} nelle strisce di sostegno

$$m_{sdx} = m_{sdy} = V_{d,out} \cdot \left(\frac{1}{8} + \frac{e_{u,i}}{2 \cdot b_s}\right)$$

 $m_{sdx} = m_{sdy} = 11'023 \cdot \left(\frac{1}{8} + \frac{0}{2 \cdot 2'620}\right) = 1'378 \text{ kNm/m}$

Rotazioni delle solette ψ

$$\psi_{x} = 1.5 \cdot \frac{r_{sx}}{d_{x}} \cdot \frac{f_{sd}}{E_{s}} \cdot \left(\frac{m_{sdx}}{m_{Rd}}\right)^{3/2} = 1.5 \cdot \frac{1.65}{0.615} \cdot \frac{600}{205'000} \cdot \left(\frac{1'378}{2'404}\right)^{3/2} = 0.00511$$

$$\psi_{y} = 1.5 \cdot \frac{r_{sy}}{d_{y}} \cdot \frac{f_{sd}}{E_{s}} \cdot \left(\frac{m_{sdy}}{m_{Rd}}\right)^{3/2} = 1.5 \cdot \frac{1.85}{0.645} \cdot \frac{600}{205'000} \cdot \left(\frac{1'378}{2'531}\right)^{3/2} = 0.00505$$

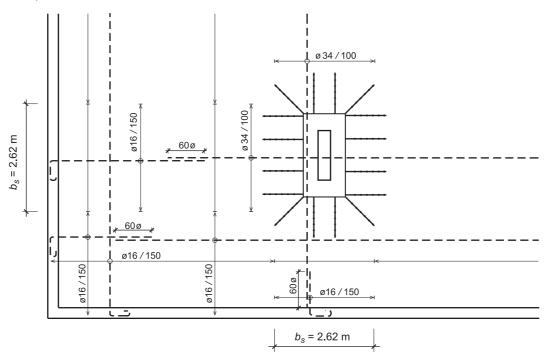
Rotazione della soletta determinante ψ = 0.00511

Coefficiente k_r per il calcolo della dimensione del componente, della rotazione della soletta e della grana massima

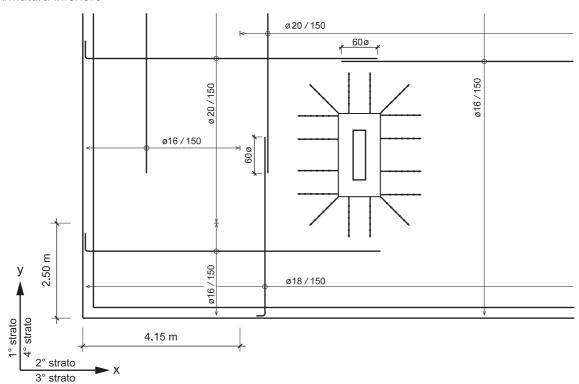
$$k_r = \frac{1}{0.45 + 0.18 \cdot \psi \cdot d \cdot k_g} = \frac{1}{0.45 + 0.18 \cdot 0.00511 \cdot 605 \cdot \frac{48}{16 + 32}} = 0.971$$

Resistenza a punzonamento $V_{Rd,c,out}$ esterna all'area con armatura a punzonamento

$$V_{Rd.c.out} = k_r \cdot \tau_{cd} \cdot d_{v.out} \cdot u_{out}$$


$$V_{Rd,c,out} = 0.971 \cdot 1.7 \cdot 605 \cdot 11'585 \cdot 10^{-3} = 11'572 \text{ kN}$$

Il valore limite di $V_{Rd,c,out}$ in base al calcolo iterativo è il seguente:


$$V_{Rd,c,out}$$
 = 11'316 kN Rotazione della soletta ψ = 0.0053 k_r = 0.950 $V_{Rd,c,out}$ = 11'316 kN > $V_{d,out}$ = 11'023 kN

4.2.9 Disegno dell'armatura

Armatura superiore

Armatura inferiore

4.3 Campo delle platee

4.3.1 Valore di dimensionamento dell'azione

$$q_{0d}, q_{sd} = \delta \cdot (\sum g_{k,i} + \Phi \cdot q_k)$$
 Con $g_k = g_{k,EG} + g_{k,AL}$

 q_{0d} parte del carico uniformemente ripartito sulla platea

 q_{sd} parte del carico aggiuntivo concentrato tra le pareti e i pilastri

δ coefficiente di ripartizione delle azioni del terreno di fondazione

 g_k azioni permanenti senza la parte della platea, ripartite in maniera uniforme

 Φ fattore di carico dinamico

 q_k valore caratteristico delle azioni dovute al terreno di fondazione a seguito dell'onda d'urto dell'aria

$$\delta = 0.5 / 2.5$$
 (ITC 2017, tabella 6)

$$\Phi$$
 = 1.2 / 2.0 (ITC 2017, tabella 4)
 q_k = 100 kN/m² (ITC 2017, capitolo 6.4)

$$g_{k.EG.soletta} = 0.70 \text{ m} \cdot 25 \text{ kN/m}^3 = 17.5 \text{ kN/m}^2$$

$$g_{k,EG,pareti} = \frac{25 \text{ kN/m}^3 \cdot 2.60 \text{ m} \cdot \left((15.15 \text{ m} + 12.85 \text{ m}) \cdot 0.30 \text{ m} + 4 \cdot 1.40 \text{ m} \cdot 0.35 \text{ m} \right)}{15.15 \text{ m} \cdot 12.85 \text{ m}}$$

$$g_{k FG pareti} \approx 3.5 \text{ kN/m}^2$$

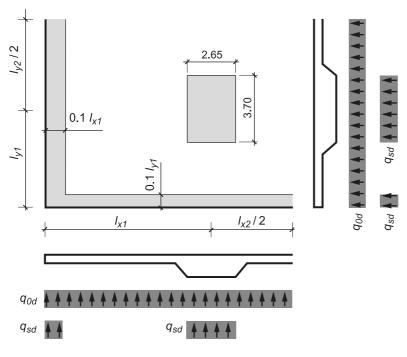
$$g_{kAl} = 0.80 \text{ m} \cdot 21 \text{ kN/m}^3 = 16.8 \text{ kN/m}^2$$

$$g_{\nu} = 17.5 \,\text{kN/m}^2 + 3.5 \,\text{kN/m}^2 + 16.8 \,\text{kN/m}^2 = 37.8 \,\text{kN/m}^2$$

area d'influsso dei pilastri

$$A = 0.2 \cdot \left(\frac{l_{x1}}{2} + \frac{l_{x2}}{2}\right) \cdot \left(\frac{l_{y1}}{2} + \frac{l_{y2}}{2}\right)$$
$$A = 0.2 \cdot \left(\frac{7.65}{2} + \frac{7.50}{2}\right) \cdot \left(\frac{4.45}{2} + \frac{8.40}{2}\right) \approx 9.73 \text{ m}^2$$

selezionato: $A = 2.65 \cdot 3.70 \text{ m} \approx 9.81 \text{ m}^2$


Valore di dimensionamento dell'azione per la sollecitazione a flessione

$$q_{0d}$$
= 0.5 · (17.5 + 3.5 + 16.8 + 1.2 · 100) = 78.9 kN/m²
 q_{sd} = 2.5 · (17.5 + 3.5 + 16.8 + 1.2 · 100) = 394.5 kN/m²

Valore di dimensionamento dell'azione della sollecitazione per taglio e punzonamento e della sollecitazione a flessione nelle strisce di sostegno durante l'operazione di punzonamento.

$$q_{0d} = 0.5 \cdot (17.5 + 3.5 + 16.8 + 2.0 \cdot 100) = 118.9 \,\mathrm{kN/m^2}$$

 $q_{sd} = 2.5 \cdot (17.5 + 3.5 + 16.8 + 2.0 \cdot 100) = 594.5 \,\mathrm{kN/m^2}$

Azione del terreno di fondazione

Superficie sotto il pilastro con sollecitazione aggiuntiva

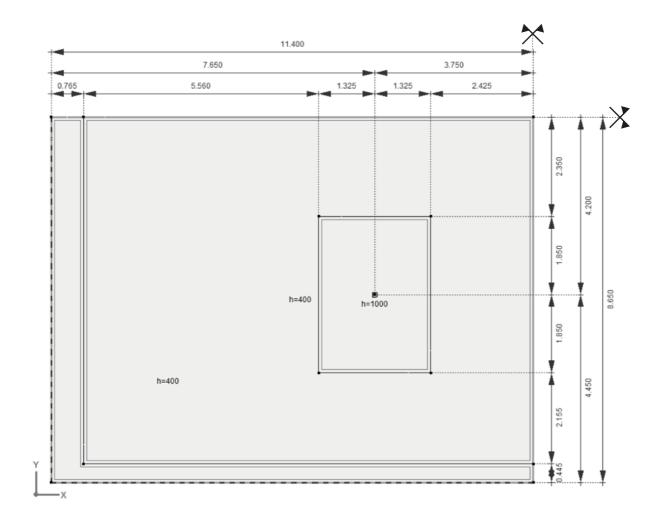
4.3.2 Altezze statiche e armatura minima

Altezze statiche

h = 0.40 m

Delle armature superiori	$d_x = 357 \text{ mm}$	$d_y = 369 \text{ mm}$	$d_m = 363 \text{ mm}$
Delle armature inferiori	$d_x = 342 \text{ mm}$	$d_y = 354 \text{ mm}$	d_m = 348 mm
<i>h</i> = 1.00 m			
Delle armature superiori	$d_x = 954 \text{ mm}$	d_y = 968 mm	<i>d_m</i> = 961 mm
Delle armature inferiori	$d_x = 915 \text{ mm}$	d_y = 945 mm	d_m = 930 mm

Armatura minima


h = 0.40 m

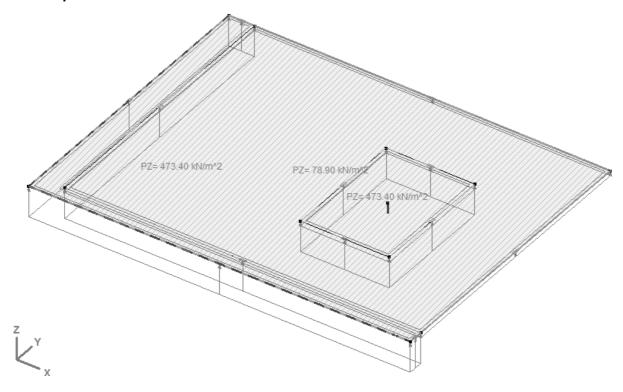
- Armatura minima zona soggetta a trazione $a_s = 0.18 \% \cdot 363 \cdot 1'000 = 654 \text{ mm}^2/\text{m} \rightarrow \emptyset 12/150 (754 \text{ mm}^2/\text{m})$
- Armatura minima zona soggetta a compressione: $a_s = 0.10 \% \cdot 363 \cdot 1'000 = 363 \text{ mm}^2/\text{m} \rightarrow \emptyset 10/150 (524 \text{ mm}^2/\text{m})$

h = 1.00 m

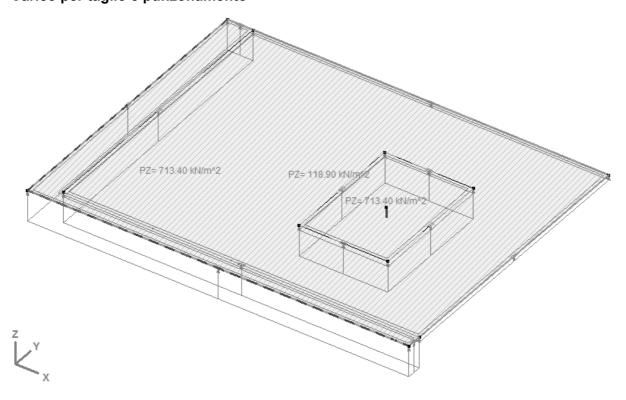
- Armatura minima zona soggetta a trazione $a_s = 0.18 \% \cdot 930 \cdot 1'000 = 1'674 \text{ mm}^2/\text{m} \rightarrow \emptyset 20/150 (2'064 \text{ mm}^2/\text{m})$

4.3.3 Modello statico

La platea viene fissata in maniera elastica lungo le pareti perimetrali verso terra. Il fissaggio corrisponde al massimo alla resistenza ultima alla flessione dell'armatura di collegamento della parete. Per il pilastro interno la platea viene appoggiata in modo puntuale.


Resistenza ultima alla flessione con \emptyset 10/150: m_{Rd} = 79 kNm/m

Le sollecitazioni di taglio vengono rilevate tramite un programma per l'analisi degli elementi finiti.

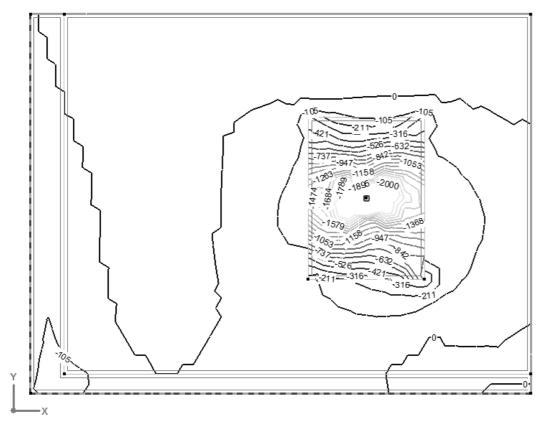

Convenzione utilizzata per la traccia: i momenti flettenti negativi creano sollecitazioni di trazione sul lato inferiore della platea.

4.3.4 Tipi di carico

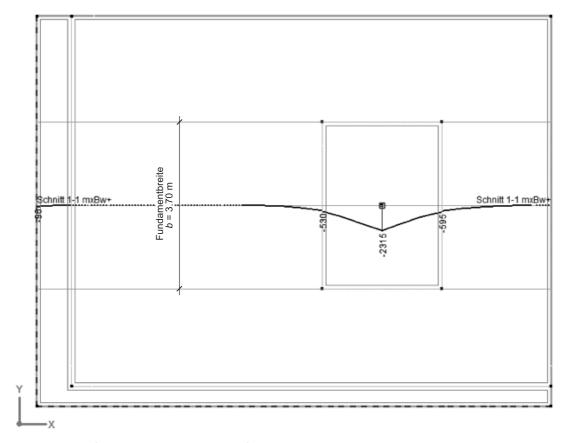
Carico per flessione

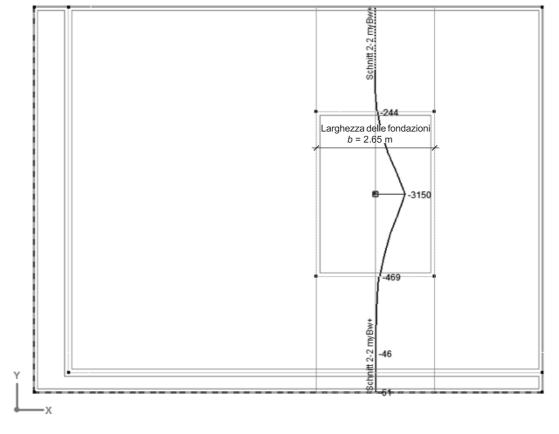


Carico per taglio e punzonamento

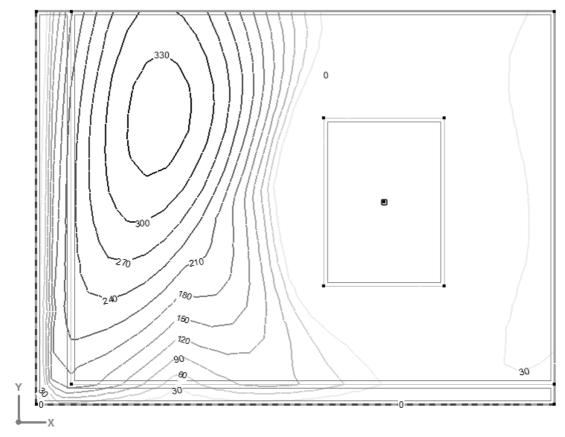


4.3.5 Sicurezza strutturale soggetta a flessione

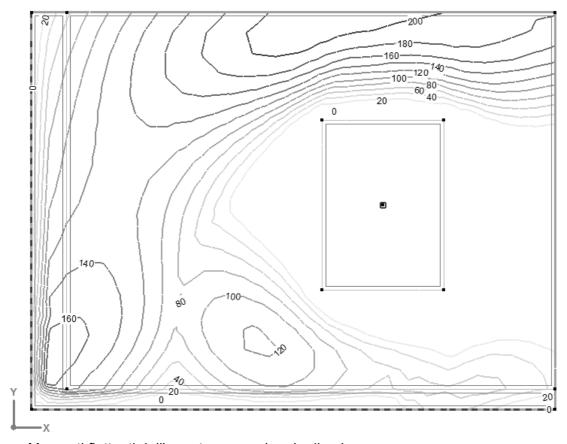

Momenti flettenti degli strati di armatura inferiori


Momenti flettenti dell'armatura inferiore in direzione x

Momenti flettenti dell'armatura inferiore in direzione y



Momenti flettenti dell'armatura inferiore in direzione x nella striscia di sostegno con Φ = 2.0



Momenti flettenti dell'armatura inferiore in direzione y nella striscia di sostegno con Φ = 2.0

Momenti flettenti degli strati di armatura superiori

Momenti flettenti dell'armatura superiore in direzione x

Momenti flettenti dell'armatura superiore in direzione y

Verifica della flessione dell'armatura superiore in direzione x

Geometria

Spessore soletta h = 400 mmRivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ Disposizione armatura 3° strato Diametro 4° strato $\emptyset = 12 \text{ mm}$

Calcolo della resistenza ultima alla flessione

Armatura di base

Diametro \emptyset = 12 mm Distanza S = 150 mm Sezione acciaio a_s = 754 mm²/m Altezza della zona soggetta a x = 12.1 mm

pressoflessione

altezza statica d = 357.0 mmBraccio di leva delle forze interne z = 351.9 mmPercentuale armatura $\rho = 0.21 \text{ }\%$

Resistenza ultima alla flessione $m_{Rd} = 159 \text{ kNm/m}$

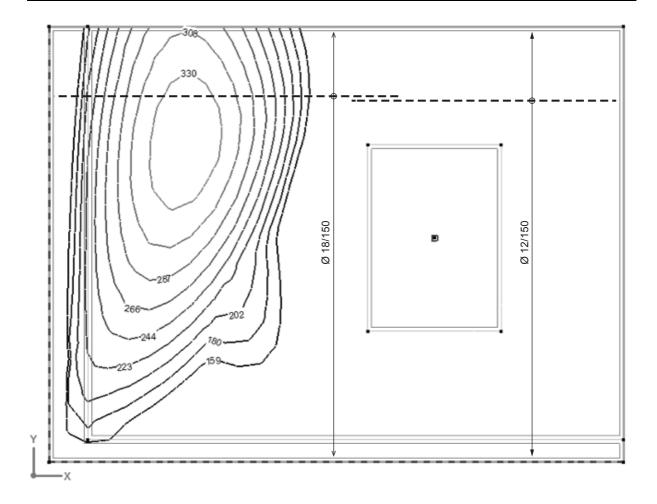
Con la percentuale minima di armatura la resistenza ultima alla flessione è pari a m_{Rd} = 159 kNm/m. Nei campi soggetti a una maggiore sollecitazione è necessaria una percentuale di armatura più elevata.

Geometria

Spessore soletta h = 400 mmRivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ Disposizione armatura 3° strato Diametro 4° strato $\emptyset = 12 \text{ mm}$

Calcolo della resistenza ultima alla flessione

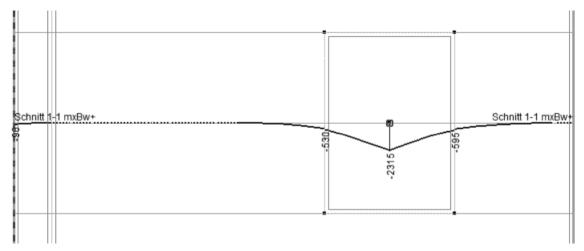
Armatura di base


Diametro \emptyset = 18 mm Distanza S = 150 mm Sezione acciaio a_s = 1'696 mm²/m Altezza della zona soggetta a x = 27.2 mm

pressoflessione

altezza statica d = 354.0 mmBraccio di leva delle forze interne z = 342.4 mmPercentuale armatura $\rho = 0.48 \%$

Resistenza ultima alla flessione m_{Rd} = 349 kNm/m


 $m_{Rd} = 349 \text{ kNm/m} > m_{xd} = 330 \text{ kNm/m}$

(rappresentato solo $m_{yd} < m_{Rd} = 159 \text{ kNm/m}$)

Momenti flettenti dell'armatura inferiore in direzione x

Incavo delle fondazioni

Geometria

Spessore soletta h = 1'000 mmRivestimento in calcestruzzo $c_{nom} = 40 \text{ mm}$ Disposizione armatura 2° strato 0 strato 0 mm

Calcolo della resistenza ultima alla flessione

Armatura di base

Diametro \emptyset = 30 mm Distanza S = 150 mm Sezione acciaio a_s = 4'712 mm²/m Altezza della zona soggetta a x = 75.6 mm

pressoflessione

altezza statica d = 915.0 mm Braccio di leva delle forze interne z = 882.9 mm Percentuale armatura ρ = 0.52 %

Resistenza ultima alla flessione $m_{Rd} = 2'496 \text{ kNm/m}$

 m_{Rd} = 2'496 kNm/m > m_{xd} = 2'315 kNm/m

Verifica della flessione dell'armatura superiore in direzione y

Geometria

h = 400 mmSpessore soletta Rivestimento in calcestruzzo $c_{nom} = 25 \text{ mm}$ 4° strato Disposizione armatura

Calcolo della resistenza ultima alla flessione

Armatura di base

ø = 12 mmDiametro s = 150 mmDistanza Sezione acciaio $a_s = 754 \text{ mm}^2/\text{m}$ x = 12.1 mmAltezza della zona soggetta a

pressoflessione

altezza statica d = 369.0 mmBraccio di leva delle forze interne z = 363.9 mmPercentuale armatura ρ = 0.20 %

Resistenza ultima alla flessione m_{Rd} = 165 kNm/m

Con la percentuale minima di armatura la resistenza ultima alla flessione è pari a m_{Rd} = 165 kNm/m. Nei campi soggetti a una maggiore sollecitazione è necessaria una percentuale di armatura più elevata.

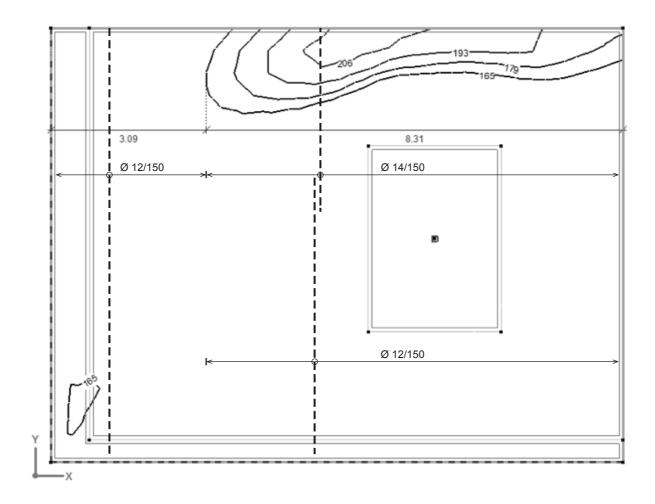
Geometria

h = 400 mmSpessore soletta c_{nom} = 25 mm Rivestimento in calcestruzzo 4° strato Disposizione armatura

Calcolo della resistenza ultima alla flessione

Armatura di base

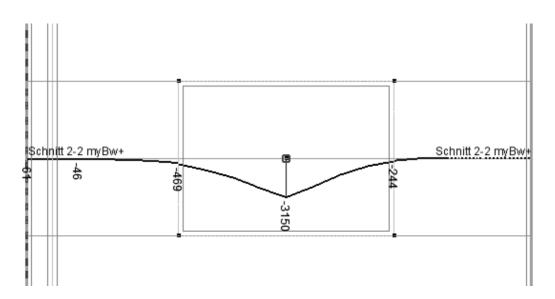
Diametro ø = 14 mmDistanza s = 150 mm $a_s = 1'026 \text{ mm}^2/\text{m}$ Sezione acciaio x = 16.5 mm


Altezza della zona soggetta a

pressoflessione

d = 368.0 mmaltezza statica Braccio di leva delle forze interne z = 361.0 mmPercentuale armatura ρ = 0.28 %

Resistenza ultima alla flessione m_{Rd} = 222 kNm/m


 m_{Rd} = 222 kNm/m > m_{vd} = 206 kNm/m

(rappresentato solo $m_{yd} > m_{Rd} = 165 \text{ kNm/m}$)

Momento flettente dell'armatura inferiore in direzione y

Incavo delle fondazioni

Geometria

Spessore soletta h = 1'000 mmRivestimento in calcestruzzo $c_{nom} = 40 \text{ mm}$ Disposizione armatura 1° strato

Calcolo della resistenza ultima alla flessione

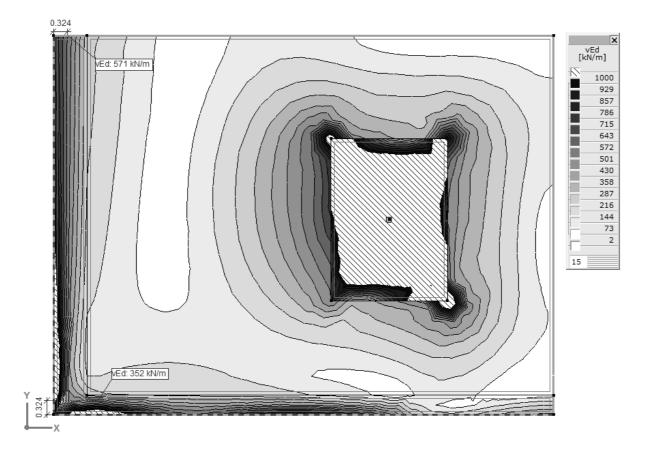
Armatura di base

Diametro \emptyset = 30 mm Distanza s = 100 mm Sezione acciaio a_s = 7'069 mm²/m Altezza della zona soggetta a x = 113.4 mm

pressoflessione

altezza statica d = 945.0 mm Braccio di leva delle forze interne z = 896.8 mm Percentuale armatura ρ = 0.75 %

Resistenza ultima alla flessione $m_{Rd} = 3'803 \text{ kNm/m}$


 m_{Rd} = 3'803 kNm/m > m_{xd} = 3'150 kNm/m

4.3.6 Resistenza ultima a taglio

Resistenza ultima a taglio lungo le pareti perimetrali

Forza di taglio determinante

La forza di taglio determinante si trova a una distanza pari a $a = d_v/2 = 348/2 = 174$ mm dal bordo dell'appoggio (oppure 324 mm dalle assi della parete) e misura al massimo $v_d = 571$ kN/m

Resistenza al taglio senza armatura di taglio nelle pareti perimetrali

Lo sfruttamento dell'armatura a flessione viene calcolato con $q_{d,max}(\Phi=2.0)$. Nelle pareti perimetrali i momenti flettenti della platea $m_d(\Phi=2.0)$ corrispondono alle resistenze ultime alla flessione delle pareti perimetrali. La resistenza al taglio della platea senza armatura di taglio lungo le pareti perimetrali viene calcolata nel seguente modo:

Momento flettente della platea $m_d (\Phi = 2.0) = 79 \text{ kNm/m} = m_{Rd,parete}$

Resistenza ultima alla flessione della platea $m_{Rd,FP} = 159$ o 165 kNm/m

Sfruttamento dell'armatura a flessione $m_d (\Phi = 2.0)/m_{Rd,FP} = 79/159 = 0.50$

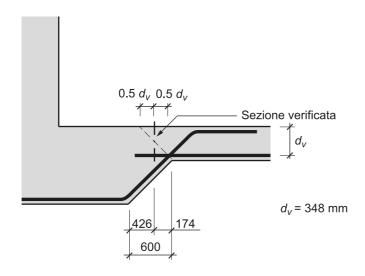
Geometria

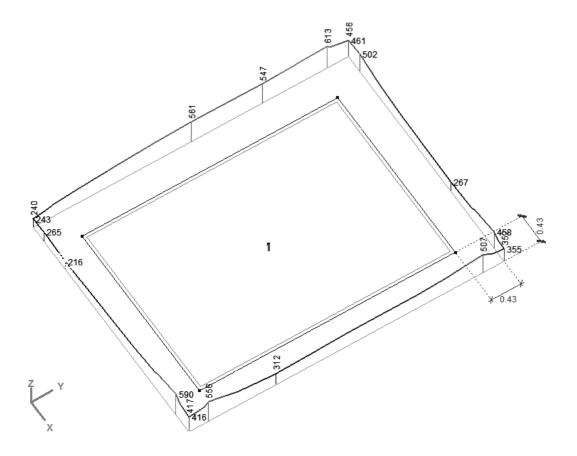
altezza statica d = 348 mm

Resistenza al taglio senza armatura di taglio (SIA 262:2013 4.3.3.2)

Sfruttamento dell'armatura a flessione m_d/m_{Rd} =0.50 Stato dell'armatura a flessione Elastico Dilatazione dell'armatura a flessione ε_v = 0.0015 Coefficiente grana max. k_g = 1.00 Coefficiente resistenza al taglio k_d = 0.66 Altezza statica effettiva d = 348 mm

Resistenza al taglio $v_{Rd} = 392 \text{ kN/m}$


 $v_{Rd} = 392 \text{ kN/m} < v_d = 571 \text{ kN/m}$


Sulle pareti perimetrali nella platea è necessaria un'armatura di taglio.

Resistenza ultima a taglio all'esterno del rinforzo della fondazione

Forza di taglio determinante

La forza di taglio determinante si trova a una distanza pari a $a = 600 - d_v/2 = 600 - 348/2 = 426$ mm dal bordo dell'appoggio del lato esterno della fondazione singola e misura al massimo $v_d = 613$ kN/m

Resistenza al taglio senza armatura di taglio

Si presume che non si possano escludere deformazioni plastiche dell'armatura a flessione. La resistenza al taglio senza armatura di taglio viene quindi calcolata nel seguente modo:

Geometria

altezza statica d = 348 mm

Resistenza al taglio senza armatura di taglio (SIA 262:2013 4.3.3.2)

Stato dell'armatura a flessione Plastico

Dilatazione dell'armatura a flessione ε_{v} = 0.0044


Coefficiente grana max. $k_g = 1.00$ Coefficiente resistenza al taglio $k_d = 0.40$ Altezza statica effettiva $d_v = 348 \text{ mm}$ Resistenza al taglio $v_{Rd} = 234 \text{ kN/m}$

 $v_{Rd} = 234 \text{ kN/m} < v_d = 613 \text{ kN/m}$

La verifica della forza di taglio all'esterno del rinforzo della fondazione non può essere eseguita senza armatura di taglio.

Area con armatura di taglio

Nell'area tratteggiata può essere effettuata la verifica della forza di taglio senza armatura di taglio ($v_d < v_{Rd} = 234 \text{ kN/m}$). Nell'area quotata lungo il bordo esterno della singola fondazione la verifica della forza di taglio non può essere eseguita senza armatura di taglio. È necessaria un'armatura di taglio.

Verifica della forza di taglio con armatura di taglio

Geometria

Braccio di leva delle forze interne z = 330 mm

Resistenza al taglio con armatura di taglio (SIA 262:2013 4.3.3.3)

Inclinazione del campo di pressione

Armatura di taglio

Diametro

Distanza in verticale dal bordo

Distanza parallela dal bordo

Inclinazione dell'armatura di taglio

Percentuale dell'armatura di taglio

Resistenza dell'armatura di taglio

Coefficiente di riduzione della resistenza a

compressione del calcestruzzo

Resistenza del campo di compressione

del calcestruzzo

 $v_{Rds} = 766 \text{ kN/m} > v_d = 613 \text{ kN/m}$

 $v_{Rd,c} = 3'458 \text{ kN/m} > v_d = 613 \text{ kN/m}$

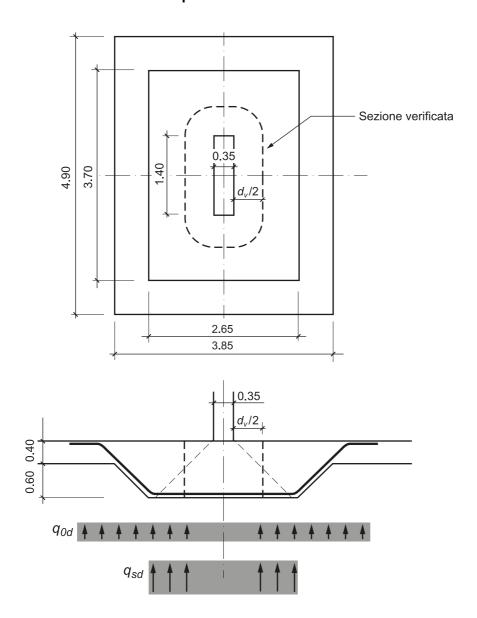
 α = 30°

 $\phi = 8 \text{ mm}$

 $s_1 = 150 \text{ mm}$

 $s_{||} = 150 \text{ mm}$

 $\beta = 0^{\circ}$


 ρ_{w} = 0.22 %

 $v_{Rd,s}$ = 766 kN/m

 $k_c = 0.55$

 $v_{Rd,c} = 3'458 \text{ kN/m}$

4.3.7 Punzonamento pilastro in calcestruzzo

In questo esempio viene selezionato il coefficiente k_e = 0.9. Non viene ridotto il perimetro della sezione verificata ma viene aumentato il carico del punzonamento. La verifica del punzonamento viene effettuata con il livello di approssimazione 2 secondo la norma SIA 262.

Valore di dimensionamento del carico del punzonamento

Superficie interna della sezione verificata A

$$A = a_x \cdot a_y + 2 \cdot a_x \cdot \frac{d_v}{2} + 2 \cdot a_y \cdot \frac{d_v}{2} + \pi \cdot \left(\frac{d_v}{2}\right)^2$$

$$A = 350 \cdot 1'400 + 2 \cdot 350 \cdot \frac{930}{2} + 2 \cdot 1'400 \cdot \frac{930}{2} + \pi \left(\frac{930}{2}\right)^2 = 2'796'791 \text{ mm}^2 = 2.80 \text{ m}^2$$

Carico del punzonamento V_d

$$V_d = N_d - q_{d,max} \cdot A = 13'400 - 713.4 \cdot 2.80 = 11'405 \text{ kN}$$

Selezione dell'armatura a flessione e calcolo delle resistenze ultime alla flessione

Armatura in direzione x 2° strato Armatura in direzione y 1° strato

Armatura inferiore in direzione x

Armatura di base $\emptyset = 30 \text{ mm}$ s = 150 mm $A_{s, esis} = 4'712 \text{ mm}^2/\text{m}$ $d_x = 915 \text{ mm}$

L'altezza statica effettiva d_v è pari a

$$d_V = \frac{d_X + d_Y}{2} = \frac{915 + 945}{2} = 930 \text{ mm}$$

Armatura inferiore in direzione y

Armatura di base $\emptyset = 30 \text{ mm}$ s = 100 mm $A_{s, esis} = 7'069 \text{ mm}^2/\text{m}$ $d_y = 945 \text{ mm}$ $m_{Rd} = 3'804 \text{ kNm/m}$

Resistenza a punzonamento senza armatura a punzonamento

 $m_{Rd} = 2'496 \text{ kNm/m}$

Perimetro della sezione verificata u

$$u = 2 \cdot 350 + 2 \cdot 1400 + 2 \cdot \pi \cdot \frac{930}{2} = 6'422 \text{ mm}$$

Perimetro ridotto della sezione verificata *u*_{red}

$$u_{red} = u \cdot k_e = 6'422 \cdot 0.9 = 5'780 \text{ mm}$$

Diametro *b* di una circonferenza con superficie uguale all'interno della superficie della sezione verificata

$$b = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{2'796'791 \cdot 4}{\pi}} = 1'887 \text{ mm}$$

Eccentricità tra la forza applicata risultante e il baricentro della sezione verificata e_u

$$e_u = b \cdot \left(\frac{1}{k_e} - 1\right) = 1'887 \cdot \left(\frac{1}{0.9} - 1\right) = 210 \text{ mm}$$

I componenti dell'eccentricità in direzione x e y verranno ripartiti in maniera uniforme

$$e_{u,x} = e_{u,y} = \sqrt{\frac{e_u^2}{2}} = \sqrt{\frac{210^2}{2}} = 149 \text{ mm}$$

Distanza r_s tra l'asse del pilastro e il bordo della fondazione (= punto di momento zero)

$$r_{\rm sx} = \frac{l_x}{2} = \frac{2.65}{2} = 1.325 \,\mathrm{m}$$

$$r_{sy} = \frac{l_y}{2} = \frac{3.70}{2} = 1.850 \text{ m}$$

Larghezza rappresentativa b_s delle strisce di sostegno

$$b_s = 1.5 \cdot \sqrt{r_{sx} \cdot r_{sy}} = 1.5 \cdot \sqrt{1.325 \cdot 1.85} = 2.35 \text{ m}$$

Momenti flettenti m_{sd} nelle strisce di sostegno

$$m_{sdx} = m_{sdy} = V_d \cdot \left(\frac{1}{8} + \frac{e_{u,i}}{2 \cdot b_s}\right)$$

 $m_{sdx} = m_{sdy} = 10'844 \cdot \left(\frac{1}{8} + \frac{149}{2 \cdot 2'350}\right) = 1'786 \text{ kNm/m}$

Rotazioni delle solette ψ

$$\psi_{x} = 1.5 \cdot \frac{r_{sx}}{d_{x}} \cdot \frac{f_{sd}}{E_{s}} \cdot \left(\frac{m_{sdx}}{m_{Rd}}\right)^{3/2} = 1.5 \cdot \frac{1.325}{0.92} \cdot \frac{600}{205'000} \cdot \left(\frac{1'786}{2'496}\right)^{3/2} = 0.0038$$

$$\psi_{y} = 1.5 \cdot \frac{r_{sy}}{d_{y}} \cdot \frac{f_{sd}}{E_{s}} \cdot \left(\frac{m_{sdy}}{m_{Rd}}\right)^{3/2} = 1.5 \cdot \frac{1.85}{0.95} \cdot \frac{600}{205'000} \cdot \left(\frac{1'786}{3'804}\right)^{3/2} = 0.0028$$

Rotazione della soletta determinante ψ = 0.0038

Coefficiente k_r per il calcolo della dimensione del componente, della rotazione della soletta e della grana massima

$$k_r = \frac{1}{0.45 + 0.18 \cdot \psi \cdot d \cdot k_g} = \frac{1}{0.45 + 0.18 \cdot 0.0038 \cdot 930 \cdot \frac{48}{16 + 32}} = 0.914$$

Resistenza a punzonamento $V_{Rd,c}$ senza armatura a punzonamento

$$V_{Rd,c} = k_r \cdot \tau_{cd} \cdot d_v \cdot u_{red}$$

 $V_{Rd,c} = 0.914 \cdot 1.7 \cdot 930 \cdot 5'780 \cdot 10^{-3} = 8'354 \text{ kN}$

Il valore limite di $V_{Rd,c}$ deve essere calcolato in maniera iterativa. Il valore limite è pari a:

$$V_{Rd,c}$$
 = 9'626 kN Rotazione della soletta ψ = 0.0030 k_r = 1.053

 $V_{Rd,c}$ = 9'626 kN < V_d = 11'405 kN

La verifica del punzonamento non può essere eseguita senza armatura a punzonamento.

Resistenza a punzonamento con armatura a punzonamento

La resistenza a punzonamento con armatura a punzonamento viene limitata dalla resistenza alla rottura della prima diagonale della pressione del calcestruzzo, adiacente alla superficie sostenuta.

$$V_{Rd,c,max} = 2 \cdot k_r \cdot \tau_{cd} \cdot d_v \cdot u_{red}$$

 $V_{Rd,c,max} = 2 \cdot 0.914 \cdot 1.7 \cdot 930 \cdot 5'780 \cdot 10^{-3} = 16'707 \text{ kN}$

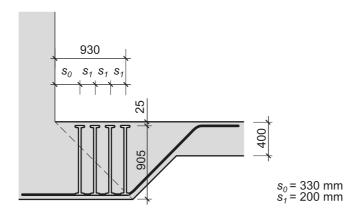
Il valore limite di $V_{Rd,c,max}$ in base al calcolo iterativo è il seguente:

$$V_{Rd,c,max}$$
 = 13'892 kN Rotazione della soletta ψ = 0.0052 k_r = 0.760

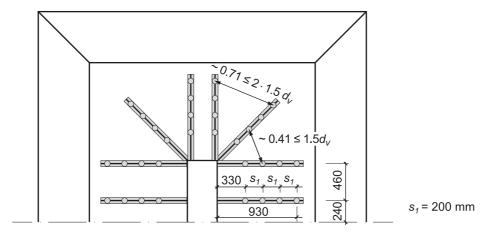
Valore di dimensionamento della forza di taglio $V_{d,s}$ dell'armatura a punzonamento

$$V_{d,s} = V_d - V_{Rd,c} \ge \frac{V_d}{2}$$

 $V_{d,s} = 11'405 - 8'354 = 3'051 \text{ kN} < \frac{11'405}{2} = 5'703 \text{ kN}$
 $V_{d,s} = 5'703 \text{ kN}$


Vengono selezionati 16 listelli di punzonamento con elementi di armatura disposti in senso radiale.

Diametro: $\phi_{sw} = 30 \text{ mm}$


Distanza radiale: $s_1 = 200 \text{ mm} \le 200 + \frac{d}{6} = 355 \text{ mm}$

Distanza dal bordo $s_0 = 330 \text{ mm}$

Numero degli elementi di armatura nella distanza tra $0.35d_v$ e d_v dalla superficie sostenuta

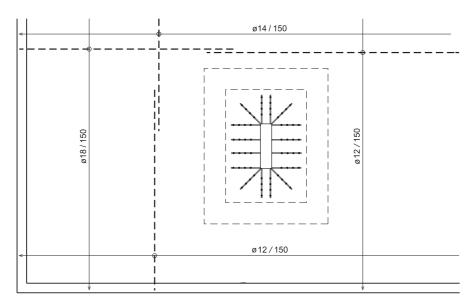
$$n = 4.16 = 64$$

Valore di dimensionamento della tensione $\sigma_{\!sd}$ nell'armatura a punzonamento

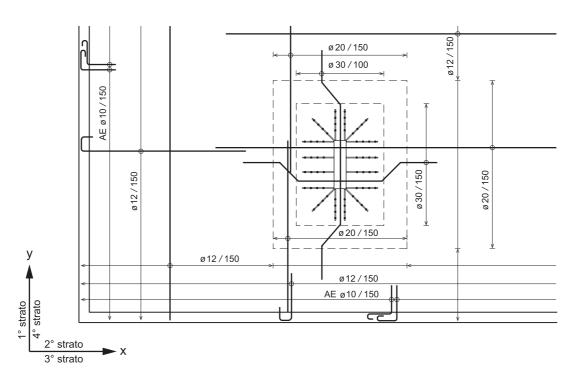
$$\sigma_{sd} = \frac{E_s \cdot \psi}{6} \cdot \left(1 + \frac{f_{bd}}{f_{sd}} \cdot \frac{d}{\phi_{sw}}\right) = \frac{205'000 \cdot 0.0038}{6} \cdot \left(1 + \frac{4.0}{600} \cdot \frac{930}{30}\right) = 159 \,\text{N/mm}^2$$

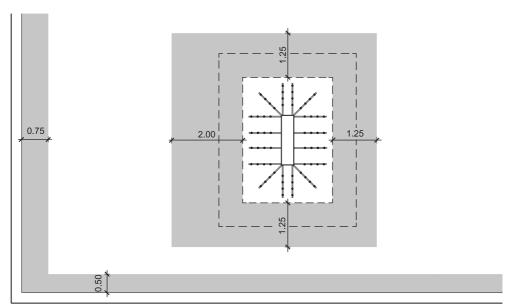
Resistenza dell'armatura a punzonamento $V_{Rd,s}$

$$V_{Rd,s} = \sum A_{sw} \cdot k_e \cdot \sigma_{sd} \cdot \sin \beta$$


$$V_{Rd,s} = 64 \cdot \pi \cdot \frac{30^2}{4} \cdot 0.9 \cdot 159 \cdot \sin (90^\circ) \cdot 10^{-3} = 6'474 \text{ kN}$$

$$V_{Rd,s} = 6'474 \text{ kN} > V_{d,s} = 5'703 \text{ kN}$$


Nel capitolo 4.3.6 viene riportata una verifica della forza di taglio all'esterno del rinforzo della fondazione.


4.3.8 Disegno dell'armatura

Armatura superiore

Armatura inferiore

Area con armatura di taglio ø8 s=150/150

4.4 Pareti perimetrali interrate

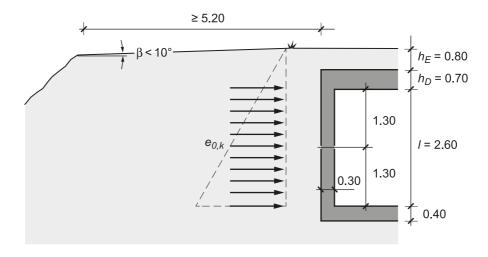
Le pareti perimetrali interrate verranno dimensionate come solette portanti in un'unica direzione.

4.4.1 Valore di dimensionamento delle azioni

Il dimensionamento delle pareti perimetrali interrate viene effettuato secondo il capitolo 6.5.1, ITC 2017.

Ipotesi terreno di fondazione:

Angolo di resistenza al taglio


$$\varphi = 30^{\circ}$$

Peso spazio umido

$$\gamma = 21 \text{ kN/m}^3$$

Coefficiente di pressione statica della terra

$$K_0 = 0.5$$

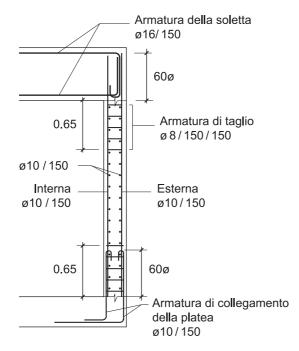
Pressione statica della terra al centro della parete

$$e_{0,k} = K_0 \cdot \left(h_E \cdot h_D + \frac{l}{2} \right) \cdot \gamma$$

$$e_{0,k} = 0.5 \cdot \left(0.8 + 0.7 + \frac{2.60}{2} \right) \cdot 21 = 29.4 \text{ kN/m}^2$$

L'effetto in seguito all'onda d'urto dell'aria e all'onda sismica viene definito alla figura 22, ITC 2017

$$q_k = 100 + 340 \cdot \frac{a}{l} = 100 + 340 \cdot \frac{0}{2.60} = 100 \text{ kN/m}^2$$


Valore di dimensionamento dell'azione

$$q_d = e_{0,k} + \Phi \cdot q_k$$

 $q_d = 29.4 + 1.2 \cdot 100 = 149.4 \text{ kN/m}^2$

4.4.2 Armatura

Armatura minima zona soggetta a trazione $a_s = 0.18 \% \cdot 270 \cdot 1000 = 486 \text{ mm}^2/\text{m} \rightarrow \emptyset 10/150$

Armatura minima zona soggetta a compressione $a_s = 0.10 \% \cdot 270 \cdot 1000 = 260 \text{ mm}^2/\text{m} \rightarrow \text{ø}10/150$

4.4.3 Resistenze ultime alla flessione

Indice	Posizione	Armatura	a _{s,ef} [mm²/m]	d [mm]	ρ _{ef} [%]	<i>m_{Rd}</i> [kNm/m]
x +	Campo Direzione x	ø10/150	524	270	0.19	84
x1-	Plinto di fondazione	ø10/150	524	255	0.21	79
x2-	Soletta	ø10/150	524	255	0.21	79

4.4.4 Sicurezza strutturale soggetta a flessione

Carico limite a flessione

$$q_{Rd} = \frac{8}{L_x^2} \cdot \left(m_{xRd}^+ + \frac{m_{xRd1}^- + m_{xRd2}^-}{2} \right) = \frac{8}{2.6^2} \cdot \left(84 + \frac{79 + 79}{2} \right) = 192.9 \, \text{kN/m}^2$$

$$q_{Rd}$$
 = 192.9 kN/m² > q_d = 149.4 kN/m²

4.4.5 Resistenza ultima a taglio

Verifica con carico limite a flessione della parete

$$q_{Rd} = 192.9 \, \text{kN/m}^2$$

Altezza statica effettiva per il calcolo delle resistenze al taglio:

$$d_{v} = 255 \text{ mm}$$

Forza di taglio sul lato lungo (y):

$$v_{yd} = q_{Rd} \cdot \frac{(I_X - d_V)}{2}$$

$$v_{yd} = 192.9 \cdot \frac{(2.6 - 0.255)}{2} = 226.2 \,\text{kN/m}$$

Verifica della forza di taglio con armatura di taglio

La resistenza al taglio con armatura di taglio viene calcolata con un braccio di leva delle forze interne di $z = 0.95 \cdot d = 0.95 \cdot 255 = 242$ mm e con un'inclinazione del campo di pressione di α = 30°.

Geometria

Braccio di leva delle forze interne z = 242 mm

Resistenza al taglio con armatura di taglio (SIA 262:2013 4.3.3.3)

Inclinazione del campo di pressione α = 30°

Armatura di taglio

Diametro $\phi = 8 \text{ mm}$ Distanza in verticale dal bordo $s_1 = 150 \text{ mm}$ Distanza parallela dal bordo $s_{||} = 150 \text{ mm}$

Inclinazione dell'armatura di taglio $\beta = 0^{\circ}$ Percentuale dell'armatura di taglio ρ_{w} = 0.22 %

Resistenza dell'armatura di taglio $v_{Rd.s} = 562 \text{ kN/m}$ Coefficiente di riduzione della resistenza a $k_c = 0.55$

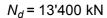
compressione del calcestruzzo

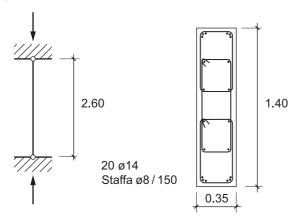
Resistenza del campo di compressione

 $v_{Rd,c} = 2'536 \text{ kN/m}$ del calcestruzzo

$$v_{Rd,s} = 562 \text{ kN/m} > v_{yd} = 226.2 \text{ kN/m}$$

$$v_{Rd,c}$$
 = 2'536 kN/m > v_{vd} = 226.2 kN/m


Lungo tutti i bordi lunghi della soletta è necessaria un'armatura di taglio.


Larghezza con armatura di taglio

$$b_s = \max(2 \cdot d_v, I_x/4) = 2.60 / 4 = 0.65 \text{ m}$$

4.5 Pilastro in calcestruzzo

4.5.1 Valore di dimensionamento della forza normale

Percentuale armatura:

$$A_s = 20 \cdot 154 = 3'080 \text{ mm}^2$$

$$A_c = 350 \cdot 1'400 = 490'000 \text{ mm}^2$$

$$\rho$$
 = A_s / A_c = 3'080 / 490'000 \cdot 100 = 0.63 % > ρ_{min} = 0.6 %

4.5.2 Verifica della sicurezza strutturale

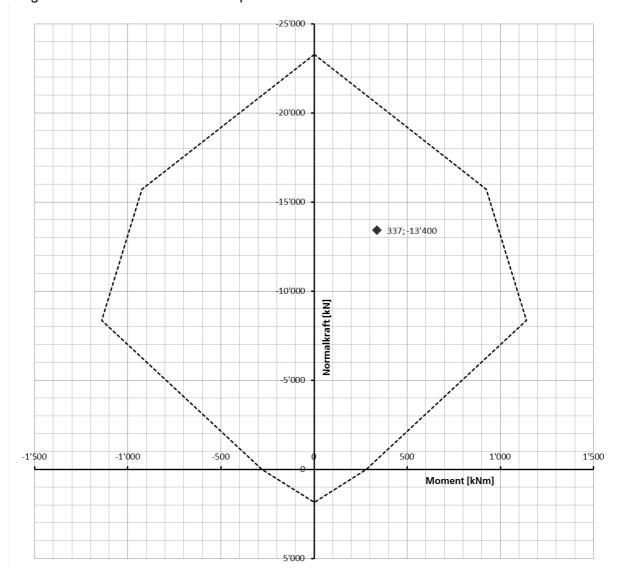
$$I_{cr}$$
 = 2'600 mm

$$\alpha_i = \frac{0.01}{\sqrt{I}} = \frac{0.01}{\sqrt{2.6}} = 0.006 > 0.005 \rightarrow \alpha_i = 0.005$$

$$e_{0d} = \alpha_i \cdot \frac{I_{cr}}{2} \ge \frac{d}{30}$$

$$e_{0d} = 0.005 \cdot \frac{2'600}{2} = 6.5 \text{ mm} < \frac{350 - 25 - 8 - \frac{14}{2}}{30}$$

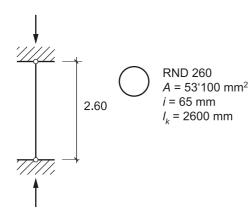
$$e_{0d}$$
 = 10.3 mm


$$\chi_d = \frac{2 \cdot f_{sd}}{E_s \cdot (d - d')} = \frac{2 \cdot 600}{205'000 \cdot (310 - 40)} = 2.17 \cdot 10^{-5}$$

$$e_{2d} = \chi_d \frac{I_{cr}^2}{c} = 2.17 \cdot 10^{-5} \cdot \frac{2'600^2}{\pi^2} = 14.9 \text{ mm}$$

$$e_d = e_{0d} + e_{2d} = 10.3 + 14.9 = 25.2 \text{ mm}$$

$$M_d = N_d \cdot e_d = 13'400 \cdot 25.2 \cdot 10^{-3} = 337 \text{ kNm}$$


Diagramma di interazione M-N semplificato

4.6 Pilastro in acciaio

4.6.1 Valore di dimensionamento della forza normale

$$N_d = 13'400 \text{ kN}$$

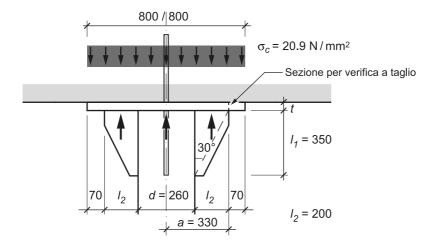
4.6.2 Verifica della sicurezza strutturale

$$\lambda_{K} = \frac{L_{K}}{i} = \frac{2'600}{65} = 40$$

$$\lambda_{E} = \pi \sqrt{\frac{E}{f_{yd}}} = \pi \sqrt{\frac{210'000}{1.3 \cdot 295}} = 73.5$$

$$\overline{\lambda}_{K} = \frac{\lambda_{K}}{\lambda_{E}} = \frac{40}{75.9} = 0.544$$

 $\alpha_K = 0.49$ Curva tensione al carico di punta c


$$\Phi_{K} = 0.5 \cdot \left[1 + \alpha_{K} \cdot \left(\overline{\lambda}_{K} - 0.2 \right) + \overline{\lambda}_{K}^{2} \right) \right]$$

$$\Phi_{K} = 0.5 \cdot \left[1 + 0.49 \cdot (0.544 - 0.2) + 0.544^{2} \right] = 0.732$$

$$\chi_K = \frac{1}{\phi_K + \sqrt{\phi_K^2 - \overline{\lambda}_K^2}} = \frac{1}{0.732 + \sqrt{0.732^2 - 0.544^2}} = 0.818$$

$$N_{K,Rd} = \chi_K \cdot f_{yd} \cdot A$$

 $N_{K,Rd} = 0.818 \cdot 1.3 \cdot 275 \cdot 53'100 \cdot 10^{-3} = 15'537 \text{ kN}$
 $N_{K,Rd} = 15'537 \text{ kN} > N_d = 13'400 \text{ kN}$

4.6.3 Testa pilastro

Piastra di testa

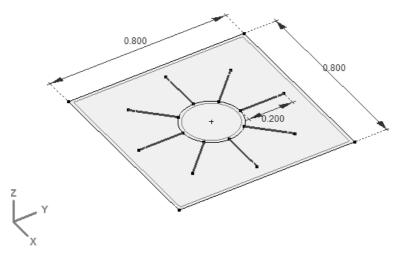
Lunghezza = larghezza = 800 mm

Compressione calcestruzzo

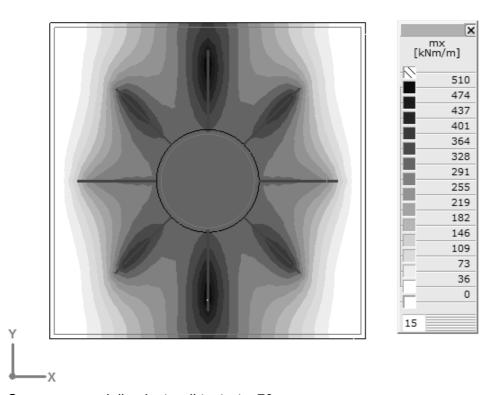
$$\sigma_c = \frac{N_d}{A} = \frac{13'400 \cdot 10^3}{800^2} = 20.9 \text{ N/mm}^2$$

Applicazione di forza

- nel pilastro


$$F_{d,pilastro} = \frac{\pi \cdot d^2}{4} \cdot \sigma_c = \frac{\pi \cdot 260^2}{4} \cdot 20.9 \cdot 10^{-3} = 1'110 \text{ kN}$$

- nelle strisce, 8 pezzi


$$F_{d,Puntello} = \frac{N_d - F_{d,pilastro}}{8} = \frac{13'400 - 1'110}{8} = 1'536 \text{ kN}$$

Definizione dello spessore della piastra di testa

La sollecitazione della piastra di testa viene calcolata con un modello FE. La piastra di testa viene modellata come elemento a guscio fissata su 8 cuscinetti lineari in senso verticale. Il calcestruzzo compresso viene utilizzato come carico morbido sulla soletta in acciaio. Non viene utilizzata la porzione di carico inserita direttamente nel pilastro.

Momenti flettenti

Con spessore della piastra di testa t = 70 mm

Resistenza ultima alla flessione

$$m_{Rd} = W_{pl} \cdot f_{yd} = \frac{t^2}{4} \cdot f_{yd} = \frac{70^2}{4} \cdot 1.3 \cdot 325 \cdot 10^{-3} = 517 \text{ kNm/m}$$

 $m_{Rd} = 517 \text{ kNm/m} > m_d = 510 \text{ kNm/m}$

Resistenza ultima a taglio

$$V_d = N_d - a^2 \cdot \pi \cdot \sigma_c = 13'400 - 0.33^2 \cdot \pi \cdot 20.9 \cdot 10^3 = 6'250 \text{ kN}$$

$$V_{Rd} = \tau_{yd} \cdot 2 \cdot a \cdot \pi \cdot t = \frac{1.3 \cdot 325}{\sqrt{3}} \cdot 2 \cdot 330 \cdot \pi \cdot 70 \cdot 10^{-3} = 35'404 \text{ kN}$$

$$V_{Rd} = 35'404 \text{ kN} > V_d = 6'250 \text{ kN}$$

Strisce

Raccordo al pilastro

t = 20 mm

Tensione tangenziale

$$\tau_{yd} = \frac{F_{d,Puntello}}{I_1 \cdot t} = \frac{1'536 \cdot 10^3}{350 \cdot 20} = 219 \text{ N/mm}^2$$

$$\tau_{Rd} = \frac{f_{yd}}{\sqrt{3}} = \frac{1.3 \cdot 345}{\sqrt{3}} = 259 \text{ N/mm}^2$$

$$\tau_{Rd} = 259 \,\text{N/mm}^2 > \tau_d = 219 \,\text{N/mm}^2$$

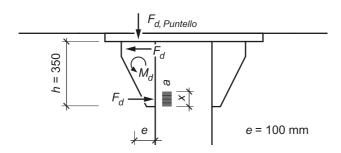
Saldatura d'angolo $a = 10 \text{ mm} < a_{max} = 0.7 \cdot t = 14 \text{ mm}$

 $I_1 = 350 \text{ mm}$

Resistenza ultima nella sezione di ancoraggio

$$F_{Rd} = 2 \cdot a \cdot I_1 \cdot 1.3 \cdot 0.6 \cdot f_{uE}$$

$$F_{Rd} = 2 \cdot 10 \cdot 350 \cdot 1.3 \cdot 0.6 \cdot 510 \cdot 10^{-3} = 2'784 \text{ kN}$$


$$F_{Rd}$$
 = 2'784 kN > $F_{d.Puntello}$ = 1'536 kN

Resistenza ultima nella sezione del montante

$$F_{Rd} = s_{min} \cdot I_1 \cdot 1.3 \cdot 0.8 \cdot f_{yd}$$

$$F_{Rd} = 2 \cdot \sqrt{2} \cdot 10 \cdot 350 \cdot 1.3 \cdot 0.8 \cdot 345 \cdot 10^{-3} = 3'552 \text{ kN}$$

$$F_{Rd}$$
 = 3'552 kN > $F_{d,Puntello}$ = 1'536 kN

In base all'eccentricità si genera un momento che viene assorbito da una coppia di forze.

$$M_d = F_{d.Puntello} \cdot e = 1'536 \cdot 0.1 = 153.6 \text{ kNm}$$

Ipotesi x = 60 mm

$$F_d = \frac{M_d}{h - \frac{x}{2}} = \frac{153.6}{0.35 - \frac{0.06}{2}} = 480 \text{ kN}$$

$$\sigma_d = \frac{F_d}{x \cdot t} = \frac{480 \cdot 10^3}{60 \cdot 20} = 400 \text{ N/mm}^2 < f_{yd} = 1.3 \cdot 345 = 448 \text{ N/mm}^2$$

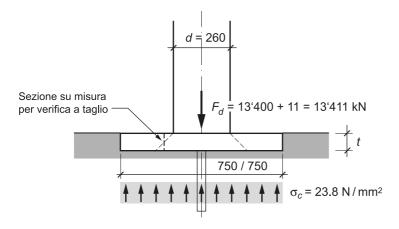
Saldatura d'angolo $a = 6 \text{ mm} < a_{max} = 0.7 \cdot t = 14 \text{ mm}$ $I_1 = 200 \text{ mm}$

Resistenza ultima nella sezione di ancoraggio

$$F_{Rd} = 2 \cdot a \cdot I_1 \cdot 1.3 \cdot 0.6 \cdot f_{uE}$$

$$F_{Rd} = 2 \cdot 10 \cdot 200 \cdot 1.3 \cdot 0.6 \cdot 510 \cdot 10^{-3} = 955 \text{ kN}$$

$$F_{Rd} = 995 \text{ kN} > F_d = 480 \text{ kN}$$

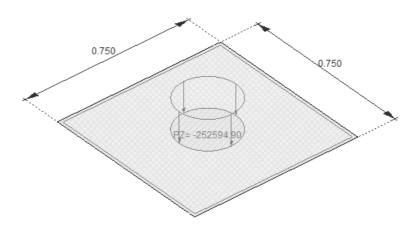

Resistenza ultima nella sezione del montante

$$F_{Rd} = s_{min} \cdot I_1 \cdot 1.3 \cdot 0.8 \cdot f_{yd}$$

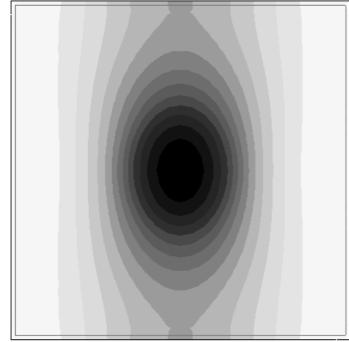
$$F_{Rd} = 2 \cdot \sqrt{2} \cdot 6 \cdot 200 \cdot 1.3 \cdot 0.8 \cdot 345 \cdot 10^{-3} = 1'218 \text{ kN}$$

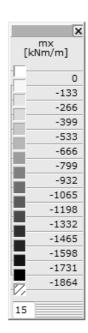
$$F_{Rd}$$
 = 1'218 kN > F_d = 480 kN

4.6.4 Soletta di fondo



$$F_d$$
 = 13'400 + 11 = 13'411 kN


$$\sigma_c = \frac{F_d}{A} = \frac{13'411 \cdot 10^3}{750^2} = 23.8 \text{ N/mm}^2$$


Il dimensionamento della soletta di fondo viene eseguito con un modello FE. La soletta in acciaio viene modellata come elemento a guscio. Il peso del pilastro viene utilizzato come carico morbido sulla soletta in acciaio.

$$f_d = \frac{F_d}{A} = \frac{13'411}{\pi \frac{0.26^2}{4}} = 252'594.9 \text{ kN/m}^2$$

Momenti flettenti

Resistenza ultima alla flessione

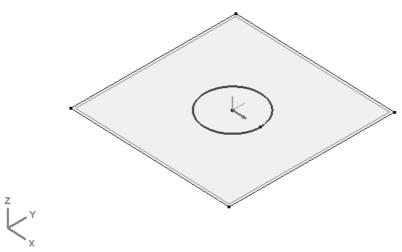
Con soletta di fondo t = 140 mm

$$m_{Rd} = W_{pl} \cdot f_{yd} = \frac{t^2}{4} \cdot f_{yd} = \frac{140^2}{4} \cdot 1.3 \cdot 295 \cdot 10^{-3} = 1'879 \text{ kNm/m}$$

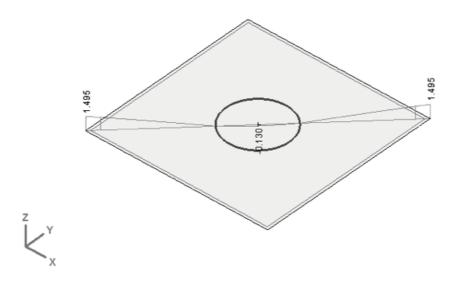
$$m_{Rd}$$
 = 1'879 kNm / m > m_d = 1'864 kNm/m

Resistenza ultima a taglio

$$V_d = F_d - \sigma_c \cdot (d+t)^2 \cdot \pi \cdot \frac{1}{4} = 13'411 - 23.8 \cdot 10^{-3} \cdot (260 + 140)^2 \cdot \pi \cdot \frac{1}{4} = 10'415 \text{ kN}$$


$$V_{Rd} = \tau_{yd} \cdot (d+t) \cdot \pi \cdot t = \frac{1.3 \cdot 295}{\sqrt{3}} \cdot (260 + 140) \cdot \pi \cdot 140 \cdot 10^{-3} = 38'953 \text{ kN}$$

$$V_{Rd}$$
 = 38'953 kN > V_d = 10'415 kN


Deformazioni

Le deformazioni verranno calcolate in un modello FE. Non deve essere superato il valore w_{zul} (ipotesi).

$$w_{zul} = \frac{2 \cdot l}{500}$$

La soletta in acciaio viene modellata come elemento a guscio fissato in senso verticale su un cuscinetto lineare sul bordo esterno del pilastro. Le forze di reazione sotto la soletta in acciaio vengono utilizzate come carico morbido sulla soletta in acciaio.

$$w_{zul} = \frac{2 \cdot l}{500} = \frac{2 \cdot 400}{500} = 1.6 \text{ mm}$$

$$w = 1.5 \text{ mm} < w_{zul} = 1.6 \text{ mm}$$